Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Mechanika

Mechanika
88(3/16), DOI: 10.7862/rm.2016.18

Propagation of the sound wave by an unclosed spherical shell and a penetrable ellipsoid

Gennady SHUSHKEVICH

DOI: 10.7862/rm.2016.18

Abstract

In this paper the result of solution of axisymmetric problem of propagation of sound wave by an unclosed spherical shell and a penetrable ellipsoid of rotation is presented. A spherical radiator is located in a thin unclosed spherical shell as a source of acoustic field. The equation of the spheroidal boundary is given in spherical coordinates. A scattered pressure field is expressed in terms of spherical wave functions. Using corresponding additional theorems the solution of boundary value problem is reduced to solving of dual equations in Legendre's polynomials, which are converted to infinite system of linear algebraic equations of the second kind. The formula for calculation of the far field and numerical results for different values of parameters are obtained.

Full text (pdf)

References

1. Blauert J., Xiang N.: Acoustics for Engineers, Springer-Verlag, Berlin, Heidelberg 2010.
2. Fuchs H. V.: Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control, Springer-Verlag, Berlin, Heidelberg 2013.
3. Erofeenko V.T., Demidchik V.I., Malyi S.V., Kornev R.V.: Penetration of electromagnetic waves through composite screens containing ideally conducting helices, J. Eng. Physics Thermophysics, 84 (2011) 799-806.
4. Ivanov N.I.: Engineering acoustics. Theory and practice of noise control, Logos, Moscow 2008 (in Russian).
5. Kleshchev A.A., Sheiba L.S.: Scattering of a sound wave by ideal prolate spheroids. Acoustic J., 16 (1970) 264-268 (in Russian).
6. Sidman R.D.: Scattering of acoustical waves by a prolate spherical obstacle, J. Acoust. Soc. America, 52 (1972), 879-883.
7. Abramov A.A., Dyshko A.L, Konyukhova N.B., Levitina T.V.: On a numerical-analytic investigation of problems of the diffraction of a plane sound wave by ideal prolate spheroids and triaxial ellipsoids, Comput. Math. Math. Phys., 35 (1995) 1103-1123
8. Lauchle G.C.: Short-wavelength acoustic diffraction by prolate spheroids. J. Acoust. Soc. America, 58 (1975) 568-575.
9. Germon A., Lauchle G.C.: Axisymmetric diffraction of spherical waves by a prolate spheroid, J. Acoust. Soc. America, 65 (1979) 1322-1327.
10. Varadan V.K., Varadan V.V., Dragonette L.R., Flax L.: Computation of rigid body by prolate spheroids using the T-matrix approach, J. Acoust. Soc. America, 71 (1982) 22-25.
11. Sammelmann G.S., Trivett D.H., Hackmann R.H.: High-frequency scattering from rigid prolate spheroids, J. Acoust. Soc. America, 83 (1988) 46-54.
12. Barton J.P., Wolf N.L., Zhang H., Tarawneh C.: Near-field calculations for a rigid spheroid with an arbitrary incident acoustic field, J. Acoust. Soc. America, 103 (2003) 1266-1222.
13. Burke J.E.: Scattering by penetrable spheroids, J. Acoust. Soc. America, 43 (1968) 871-875.
14. Kotsis A.D., Roumeliotis J.A.: Acoustic scattering by a penetrable spheroid, Acoust. Phys., 54 (2008) 153-167.
15. Kleshchev A.A., Rostovcev D.M.: Scattering of a sound by elastic and liquid ellipsoidal shells of revolution, Acoustic J., 32 (1986) 691-694 (in Russian).
16. Kleshchev A. A.: With reference to low frequency resonances of elastic spheroidal bodies, J. Techn. Acoust., 2 (1995) 27-28.
17. Bao X.L., Uberall H., Niemiec J.: Experimental study of sound scaterring by elastic spheroids, J. Acoust. Soc. America, 102 (1997), 933-942.
18. Tolokonnikov L. A., Lobanov A. V.: About scattering of plane sound wave by inhomogeneous elastic spheroid, Proc. Tula State University, Natural Sciences, 3 (2011) 119-125 (in Russian).
19. Tolokonnikov L. A.: Diffraction of plane sound wave on elastic spheroid with arbitrary located spherical vacuity, Proc. Tula State University, Natural Sciences, 2 (2011) 169-175 (in Russian).
20. Grinchenko V.T., Vovk I.V., Matsipura V.T.: Fundamentals of acoustics, Naukova dumka, Kiev 2007 (in Russian).
21. Ivanov E. A.: Diffraction of electromagnetic waves on two bodies, Springfield, Washington 1970.
22. Shushkevich G.Ch., Kiselyova N.N.: Penetration of sound field through multi-layered spherical shell, Computer Sci., 3 (2013) 47-57 (in Russian).
23. Erofeenko V.T.: Addition theorems, Nauka and Technika, Minsk 1989.
24. Shushkevich G.Ch., Shushkevich S.V.: Computer technology in mathematics, The system Mathcad 14: in 2 parts, Grevsova, Minsk 2012 (in Russian).

About this Article

TITLE:
Propagation of the sound wave by an unclosed spherical shell and a penetrable ellipsoid

AUTHORS:
Gennady SHUSHKEVICH

AUTHORS AFFILIATIONS:
Yanka Kupala State Universy of Grodno, Belarus

JOURNAL:
Mechanika
88(3/16)

KEY WORDS AND PHRASES:
sound field, spherical shell, ellipsoid of rotation, dual equations, spherical radiator

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/mechanika/182

DOI:
10.7862/rm.2016.18

URL:
http://dx.doi.org/10.7862/rm.2016.18

RECEIVED:
2016-05-24

ACCEPTED:
2016-08-28

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności