PROPAGATION OF THE SOUND WAVE BY AN UNCLOSED SPHERICAL SHELL AND A PENETRABLE ELLIPSOID

Abstract

In this paper the result of solution of axisymmetric problem of propagation of sound wave by an unclosed spherical shell and a penetrable ellipsoid of rotation is presented. A spherical radiator is located in a thin unclosed spherical shell as a source of acoustic field. The equation of the spheroidal boundary is given in spherical coordinates. A scattered pressure field is expressed in terms of spherical wave functions. Using corresponding additional theorems the solution of boundary value problem is reduced to solving of dual equations in Legendre's polynomials, which are converted to infinite system of linear algebraic equations of the second kind. The formula for calculation of the far field and numerical results for different values of parameters are obtained.

Keywords: sound field, spherical shell, ellipsoid of rotation, dual equations, spherical radiator

1. Introduction

The study of sound waves propagation in different media has a number of practical applications in electroacoustics, hydroacoustics, medical diagnostics, bioacoustics, creation of multi-layer sound-absorbing panels against noise and vibration [1-4]. Numerous publications describe the problems of propagation of sound field by different objects and they use different analytical and numerical techniques. We will consider just a few publications related to the research topic. The propagation of the sound field by hard or soft, prolate or oblate spheroids using different techniques is considered in [5-12]. The results of the sound field propagation on permeable and elastic spheroids are studied in [1317]. The analytical description of the acoustic field scattered by a inhomogeneous elastic spheroid is obtained in [18]. The analytical solution to the diffraction problem of the plane sound wave on an elastic spheroid with arbitrary located spherical cavity is constructed in [19].

[^0]In this paper analytical solution to axisymmetric problem of propagation of the sound wave by an unclosed thin spherical shell and a penetrable ellipsoid of rotation is presented. A spherical radiator is located in a thin unclosed spherical shell as a source of acoustic field. The equation of the spheroidal boundary is given in spherical coordinates. The solution of boundary value problem is reduced to solving of dual equations in Legendre's polynomials which are converted to infinite system of linear algebraic equations of the second kind. Numerical results are given for various values of parameters of the problem.

2. Problem formulation

Let a homogeneous space R^{3} contain a thin unclosed spherical shell Γ_{1} located on a sphere Γ of radius d with the center at point O and an ellipsoid shell S (fig. 1). We denote by D_{1} the area of space bounded by the sphere Γ and by D_{3} the area of space bounded by the ellipsoid shell S then $\mathrm{D}_{2}=\mathrm{R}^{3} \backslash\left(\mathrm{D}_{1} \cup \Gamma \cup \mathrm{D}_{3} \cup S\right)$ holds. The distance between points O and O_{1} is equal to h_{1}.

Fig. 1. Geometry of the problem

A point radiator of sound wave oscillating with an angular frequency ω is located at the point O . Areas $\mathrm{D}_{\mathrm{j}}, \mathrm{j}=1,2,3$, are filled with material in which shear waves are not being spread. Let denote the density of medium by ρ_{j} and the speed of sound by c_{j} in $D_{j}, j=1,2,3, \rho_{1}=\rho_{2}$.

To solve this problem we introduce spherical coordinates with the point O and the point O_{1}. The spherical shell Γ_{1} and the ellipsoid shell S are described as follows:

$$
\begin{align*}
& \Gamma_{1}=\left\{\mathrm{r}=\mathrm{d}, 0 \leq \theta \leq \theta_{0}<\pi, 0 \leq \varphi \leq 2 \pi\right\}, \tag{1}\\
& S=\left\{r_{1}=r\left(\theta_{1}\right), 0 \leq \theta_{1} \leq \pi, 0 \leq \varphi \leq 2 \pi\right\} \tag{2}
\end{align*}
$$

where $r\left(\theta_{1}\right)=a / \sqrt{1-v \sin ^{2} \theta_{1}}, v=e^{2} /\left(e^{2}-1\right)$ stands for a prolate ellipsoid of rotation, $v=e^{2}$ is used for an oblate ellipsoid of rotation, e is the eccentricity of the ellipse.

Let p_{c} be a pressure of primary point radiator of sound field, p_{j} be a pressure of secondary sound field in the area $D_{j}, j=1,2,3$, then the real sound pressure is calculated by the formula $P_{j}=\operatorname{Re}\left(p_{j} e^{-i \omega t}\right)$.

Solution of the diffraction problem is reduced to finding pressures p_{j}, $j=1,2,3$, which satisfy:

1) the Helmholtz equation [20]

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{j}}+\mathrm{k}_{\mathrm{j}}^{2} \mathrm{p}_{\mathrm{j}}=0 \tag{3}
\end{equation*}
$$

where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is the Laplace operator, $\mathrm{k}_{\mathrm{j}}=\omega / \mathrm{c}_{\mathrm{j}}$ is a wave number,
2) boundary condition on the surface of the spherical shell Γ_{1} (acoustically hard shell):

$$
\begin{equation*}
\left.\frac{\partial}{\partial \overrightarrow{\mathrm{n}}}\left(\mathrm{p}_{\mathrm{c}}+\mathrm{p}_{1}\right)\right|_{\Gamma_{1}}=0 \tag{4}
\end{equation*}
$$

where $\overrightarrow{\mathrm{n}}$ is the normal to the surface Γ_{1},
3) boundary conditions on the surface of the ellipsoidal shell S :

$$
\begin{equation*}
\left.\mathrm{p}_{2}\right|_{\mathrm{S}}=\left.\mathrm{p}_{3}\right|_{\mathrm{S}},\left.\quad \frac{1}{\rho_{2}} \frac{\partial}{\partial \overrightarrow{\mathrm{n}}} \mathrm{p}_{2}\right|_{\mathrm{S}}=\left.\frac{1}{\rho_{3}} \frac{\partial}{\partial \overrightarrow{\mathrm{n}}} \mathrm{p}_{3}\right|_{\mathrm{S}}, \tag{5}
\end{equation*}
$$

where $\overrightarrow{\mathrm{n}}$ is the normal to the surface S and the condition at infinity [20-23]:

$$
\begin{equation*}
\lim _{M \rightarrow \infty} r\left(\frac{\partial p_{2}(M)}{\partial r}-i k p_{2}(M)\right)=0 \tag{6}
\end{equation*}
$$

where M is an arbitrary point at the space.

The condition of the continuity of pressure on the open part of the spherical shell $\Gamma \backslash \Gamma_{1}$ and the normal derivative on the surface of the sphere Γ are given by [22, 23]:

$$
\begin{equation*}
\left.\left(\mathrm{p}_{\mathrm{c}}+\mathrm{p}_{1}\right)\right|_{\Gamma \Gamma \Gamma_{1}}=\left.\mathrm{p}_{2}\right|_{\Gamma \Gamma \Gamma_{1}},\left.\quad \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{p}_{\mathrm{c}}+\mathrm{p}_{1}\right)\right|_{\Gamma}=\left.\frac{\partial}{\partial \mathrm{r}} \mathrm{p}_{2}\right|_{\Gamma} . \tag{7}
\end{equation*}
$$

3. Presentation of problem solution

The initial pressure of sound field can be presented in the form [21]:

$$
\begin{equation*}
p_{c}(r, \theta)=P \exp \left(k_{1} r\right) / r=P \sum_{n=0}^{\infty} f_{n} h_{n}^{(1)}\left(k_{1} r\right) P_{n}(\cos \theta), \quad f_{n}=i k \delta_{0 n} \tag{8}
\end{equation*}
$$

where $h_{n}^{(1)}(x)$ are the spherical Hankel functions, $P_{n}(\cos \theta)$ are the Legendre polynomials, $\delta_{0 \mathrm{n}}$ is the Kronecker delta, P is constant.

The pressure of the scattered sound field presented as a superposition of the basic solutions of the Helmholtz equation in spherical coordinates taking into account the condition at infinity (6):

$$
\begin{align*}
& p_{1}(r, \theta)=P \sum_{n=0}^{\infty} a_{n} j_{n}\left(k_{1} r\right) P_{n}(\cos \theta), r<d, \tag{9}\\
& p_{2}^{(1)}(r, \theta)=P \sum_{n=0}^{\infty} x_{n} h_{n}^{(1)}\left(k_{1} r\right) P_{n}(\cos \theta), r>d, \tag{10}\\
& p_{2}^{(2)}\left(r_{1}, \theta_{1}\right)=P \sum_{n=0}^{\infty} y_{n} h_{n}^{(1)}\left(k_{1} r_{1}\right) P_{n}\left(\cos \theta_{1}\right), r_{1}>r\left(\theta_{1}\right), \tag{11}\\
& p_{3}\left(r_{1}, \theta_{1}\right)=P \sum_{n=0}^{\infty} b_{n} j_{n}\left(k_{3} r_{1}\right) P_{n}\left(\cos \theta_{1}\right), \quad r_{1}<r\left(\theta_{1}\right) \tag{12}
\end{align*}
$$

where $p_{2}=p_{2}^{(1)}(r, \theta)+p_{2}^{(2)}\left(r_{1}, \theta_{1}\right), j_{n}(x)$ are the spherical Bessel functions of the first kind.

Unknown coefficients $\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}$ must be determined from the boundary conditions.

4. Fulfilment of boundary conditions

First, we will express function $p_{2}^{(2)}\left(r_{1}, \theta_{1}\right)$ through the spherical wave functions in the coordinate system with the origin at the point O using the formulae [22, 23]:

$$
\begin{align*}
& \mathrm{h}_{\mathrm{n}}^{(1)}\left(\mathrm{kr}_{1}\right) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right)=\sum_{\mathrm{k}=0}^{\infty} \mathrm{A}_{\mathrm{nk}}\left(\mathrm{~h}_{1}\right) \mathrm{j}_{\mathrm{k}}(\mathrm{kr}) \mathrm{P}_{\mathrm{k}}(\cos \theta), \mathrm{r}<\mathrm{h}_{1}, \\
& \mathrm{~A}_{\mathrm{nk}}\left(\mathrm{~h}_{1}\right)=(2 \mathrm{k}+1) \sum_{\sigma=|\mathrm{k}-\mathrm{n}|}^{\mathrm{k}+\mathrm{n}} \mathrm{i}^{\sigma+\mathrm{k}-\mathrm{n}} \mathrm{~b}_{\sigma}^{(\mathrm{n} 0 \mathrm{k} 0)} \mathrm{h}_{\sigma}^{(1)}\left(\mathrm{kh}_{1}\right), \tag{13}\\
& \mathrm{b}_{\sigma}^{(\mathrm{n} 0 q 0)}=(\mathrm{nq} 00 \mid \sigma 0)^{2}, \quad(\mathrm{nq} 00 \mid \sigma 0) \text { are theClebsch - Gordan coefficients, }
\end{align*}
$$

then

$$
\begin{equation*}
\mathrm{p}_{2}^{(2)}(\mathrm{r}, \theta)=\mathrm{P} \sum_{\mathrm{n}=0}^{\infty} \mathrm{p}_{\mathrm{n}} \mathrm{j}_{\mathrm{n}}\left(\mathrm{k}_{1} \mathrm{r}\right) \mathrm{P}_{\mathrm{n}}(\cos \theta), \mathrm{p}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\infty} \mathrm{y}_{\mathrm{k}} \mathrm{~A}_{\mathrm{kn}}\left(\mathrm{~h}_{1}\right) \tag{14}
\end{equation*}
$$

Considering (8)-(10), (14) and taking into account the condition of orthogonality of the Legendre polynomials on the interval $[0 ; \pi]$ the boundary conditions (4), (7) will become:

$$
\left.\begin{array}{l}
\sum_{n=0}^{\infty} x_{n} \frac{d}{d \xi_{0}} h_{n}^{(1)}\left(\xi_{0}\right) P_{n}(\cos \theta)=-\sum_{n=0}^{\infty} p_{n} \frac{d}{d \xi_{0}} j_{n}\left(\xi_{0}\right) P_{n}(\cos \theta), 0 \leq \theta<\theta_{0}, \\
\sum_{n=0}^{\infty} \frac{\frac{x_{n}}{d}-f_{n}}{d \xi_{0}} j_{n}\left(\xi_{0}\right) \tag{15}\\
P_{n}(\cos \theta)=0, \quad \theta_{0}<\theta \leq \pi, \xi_{0}=k_{1} d .
\end{array}\right\}
$$

We introduce new coefficients X_{n} by the formula

$$
\begin{equation*}
x_{n}=X_{n} \frac{d}{d \xi_{0}} j_{n}\left(\xi_{0}\right)+f_{n}, \quad n=0,1, \ldots \tag{16}
\end{equation*}
$$

and the small parameter

$$
\begin{equation*}
\mathrm{g}_{\mathrm{n}}=1+\frac{4 \mathrm{i} \xi_{0}^{3}}{2 \mathrm{n}+1} \frac{\mathrm{~d}}{\mathrm{~d} \xi_{0}} \mathrm{j}_{\mathrm{n}}\left(\xi_{0}\right) \frac{\mathrm{d}}{\mathrm{~d} \xi_{0}} \mathrm{~h}_{\mathrm{n}}^{(1)}\left(\xi_{0}\right) \tag{17}
\end{equation*}
$$

From the asymptotic representations for functions $j_{n}(x), h_{n}^{(1)}(x)$, where n >> x [21]:

$$
\begin{equation*}
\mathrm{j}_{\mathrm{n}}(\mathrm{x}) \approx \frac{2^{\mathrm{n}} \mathrm{n}!(\mathrm{x})^{\mathrm{n}}}{(2 \mathrm{n}+1)!}, \quad \mathrm{h}_{\mathrm{n}}^{(1)}(\mathrm{x}) \approx-\frac{\mathrm{i}(2 \mathrm{n})!}{2^{\mathrm{n}} n!(\mathrm{x})^{\mathrm{n}}}, \tag{18}
\end{equation*}
$$

follows that $\mathrm{g}_{\mathrm{n}}=\mathrm{O}\left(\mathrm{n}^{-2}\right)$.
The dual series equations (15) take the form

$$
\left.\begin{array}{l}
\sum_{n=0}^{\infty}(2 n+1)\left(1-g_{n}\right) X_{n} P_{n}(\cos \theta)=\sum_{n=0}^{\infty}(2 n+1)\left(\tilde{f}_{n}+\tilde{p}_{n}\right) P_{n}(\cos \theta), 0 \leq \theta<\theta_{0}, \\
\sum_{n=0}^{\infty} X_{n} P_{n}(\cos \theta)=0, \quad \theta_{0}<\theta \leq \pi, \tag{19}
\end{array}\right\}
$$

where

$$
\begin{equation*}
\tilde{\mathrm{f}}_{\mathrm{n}}=4 \mathrm{i} \xi_{0}^{3} \mathrm{f}_{\mathrm{n}} \frac{\mathrm{~d}}{\mathrm{~d} \xi_{0}} \mathrm{~h}_{\mathrm{n}}^{(1)}\left(\xi_{0}\right) /(2 \mathrm{n}+1), \quad \tilde{\mathrm{p}}_{\mathrm{n}}=4 \mathrm{i} \xi_{0}^{3} \mathrm{a}_{\mathrm{n}} \frac{\mathrm{~d}}{\mathrm{~d} \xi_{0}} \mathrm{j}_{\mathrm{n}}\left(\xi_{0}\right) /(2 \mathrm{n}+1) \tag{20}
\end{equation*}
$$

The dual series equations are transformed to the infinite system of linear algebraic equations of the second kind with the completely continuous operator using the integral representation for the Legendre polynomials [22]:

$$
\begin{equation*}
X_{n}-\sum_{\mathrm{k}=0}^{\infty} \mathrm{g}_{\mathrm{k}} \mathrm{R}_{\mathrm{nk}}\left(\theta_{0}\right) \mathrm{X}_{\mathrm{k}}=\sum_{\mathrm{k}=0}^{\infty}\left(\tilde{\mathrm{p}}_{\mathrm{k}}+\tilde{\mathrm{f}}_{\mathrm{k}}\right) \mathrm{R}_{\mathrm{nk}}\left(\theta_{0}\right), \quad \mathrm{n}=0,1, \ldots \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{R}_{\mathrm{nk}}\left(\theta_{0}\right)=\frac{1}{\pi}\left[\frac{\sin (\mathrm{n}-\mathrm{k}) \theta_{0}}{\mathrm{n}-\mathrm{k}}-\frac{\sin (\mathrm{n}+\mathrm{k}+1) \theta_{0}}{\mathrm{n}+\mathrm{k}+1}\right],\left.\frac{\sin (\mathrm{n}-\mathrm{k}) \theta_{0}}{\mathrm{n}-\mathrm{k}}\right|_{\mathrm{n}=\mathrm{k}}=\theta_{0} . \tag{22}
\end{equation*}
$$

Now we present the function $\mathrm{p}_{2}^{(1)}(\mathrm{r}, \theta)$ through the spherical wave functions in the coordinate system with origin at the point O_{1} using formula [22, 23]:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{n}}^{(1)}(\mathrm{kr}) \mathrm{P}_{\mathrm{n}}(\cos \theta)=\sum_{\mathrm{k}=0}^{\infty} \mathrm{B}_{\mathrm{nk}}\left(\mathrm{~h}_{1}\right) \mathrm{j}_{\mathrm{k}}\left(\mathrm{kr}_{1}\right) \mathrm{P}_{\mathrm{k}}\left(\cos \theta_{1}\right), \quad \mathrm{r}_{1}<\mathrm{h}_{1}, \tag{23}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{p}_{2}^{(1)}\left(\mathrm{r}_{1}, \theta_{1}\right)=\mathrm{P} \sum_{\mathrm{n}=0}^{\infty} \mathrm{z}_{\mathrm{n}} \mathrm{j}_{\mathrm{n}}\left(\mathrm{k}_{1} \mathrm{r}_{1}\right) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right), \mathrm{z}_{\mathrm{n}}=\sum_{\mathrm{p}=0}^{\infty} \mathrm{x}_{\mathrm{p}} \mathrm{~B}_{\mathrm{pn}}\left(\mathrm{~h}_{1}\right), \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{B}_{\mathrm{nk}}\left(\mathrm{~h}_{1}\right)=(2 \mathrm{k}+1) \sum_{\sigma=\mathrm{k}-\mathrm{n} \mid}^{\mathrm{k}+\mathrm{n}}(-1)^{\sigma} \mathrm{i}^{\sigma+k-n} b_{\sigma}^{(\mathrm{n} 0 k 0)} h_{\sigma}^{(1)}\left(k_{1} h_{1}\right) . \tag{25}
\end{equation*}
$$

In view of the fact that

$$
\left.\begin{array}{l}
\left.\frac{\partial}{\partial \overrightarrow{\mathrm{n}}} \mathrm{p}_{\mathrm{j}}\left(\mathrm{r}_{1}, \theta_{1}\right)\right|_{\mathrm{s}}=\frac{\partial}{\partial \mathrm{r}_{1}} \mathrm{p}_{\mathrm{j}}\left(\mathrm{r}_{1}, \theta_{1}\right)-\left.\frac{\mathrm{r}^{\prime}\left(\theta_{1}\right)}{\mathrm{r}\left(\theta_{1}\right)^{2}} \frac{\partial}{\partial \theta_{1}} \mathrm{p}_{\mathrm{j}}\left(\mathrm{r}_{1}, \theta_{1}\right)\right|_{\mathrm{r}_{\mathrm{i}}=\mathrm{r}\left(\theta_{1}\right)}, j=2,3, \tag{26}\\
\frac{\mathrm{~d}}{\mathrm{~d} \theta_{1}} \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right)=\mathrm{P}_{\mathrm{n}}^{1}\left(\cos \theta_{1}\right),
\end{array}\right\}
$$

boundary conditions (5) together with (11), (12), (24) take the form

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\sum_{n=0}^{\infty} z_{n} j_{n}\left(k_{1} r\left(\theta_{1}\right)\right) P_{n}\left(\cos \theta_{1}\right)+\sum_{n=0}^{\infty} y_{n} h_{n}^{(1)}\left(k_{1} r\left(\theta_{1}\right)\right) P_{n}\left(\cos \theta_{1}\right)= \\
=\sum_{n=0}^{\infty} b_{n} j_{n}\left(k_{3} r\left(\theta_{1}\right)\right) P_{n}\left(\cos \theta_{1}\right),
\end{array}\right\} \\
\sum_{n=0}^{\infty} z_{n} k_{1} j_{n}\left(\xi_{1}\right) P_{n}\left(\cos \theta_{1}\right)-\frac{r^{\prime}\left(\theta_{1}\right)}{r\left(\theta_{1}\right)^{2}} j_{n}\left(\xi_{1}\right) P_{n}^{1}\left(\cos \theta_{1}\right)+ \\
+\sum_{n=0}^{\infty} y_{n} k_{1} h_{n}^{(1)^{\prime}}\left(\xi_{1}\right) P_{n}\left(\cos \theta_{1}\right)-\frac{r^{\prime}\left(\theta_{1}\right)}{r\left(\theta_{1}\right)^{2}} h_{n}^{(1)}\left(\xi_{1}\right) P_{n}^{1}\left(\cos \theta_{1}\right)= \\
=\frac{\rho_{1}}{\rho_{3}} \sum_{n=0}^{\infty} b_{n} k_{3} j_{n}^{\prime}\left(\xi_{3}\right) P_{n}\left(\cos \theta_{1}\right)-\frac{r^{\prime}\left(\theta_{1}\right)}{r\left(\theta_{1}\right)^{2}} j_{n}\left(\xi_{3}\right) P_{n}^{1}\left(\cos \theta_{1}\right), \xi_{j}=k_{j} r\left(\theta_{1}\right), j=1,3 . \tag{28}
\end{array}\right\}
$$

Let eliminate coefficients z_{n} in (27), (28) using (24), (16). We multiply the resulting equations by $\mathrm{P}_{\mathrm{s}}(\cos \theta) \sin \theta \mathrm{d} \theta, \mathrm{s}=0,1,2, \ldots$, and integrate from 0 to π, and link with (21) then we have

$$
\left.\begin{array}{l}
\sum_{\mathrm{n}=0}^{\infty}\left(\mathrm{g}_{\mathrm{n}} \mathrm{R}_{\mathrm{sn}}\left(\theta_{0}\right)-\delta_{\mathrm{ns}}\right) \mathrm{X}_{\mathrm{n}}+\sum_{\mathrm{n}=0}^{\infty} \tilde{\mathrm{b}}_{\mathrm{ns}}\left(\mathrm{k}_{1}\right) \mathrm{y}_{\mathrm{n}}=4 \xi_{0}^{3} \mathrm{k}_{1} \frac{\mathrm{~d}}{\mathrm{~d} \xi_{0}} \mathrm{~h}_{0}^{(1)}\left(\xi_{0}\right) \mathrm{R}_{\mathrm{s} 0}\left(\theta_{0}\right), \mathrm{s}=0,1,2, \ldots, \\
\sum_{\mathrm{n}=0}^{\infty} \mathrm{X}_{\mathrm{n}} \tilde{a}_{\mathrm{ns}}\left(\mathrm{k}_{1}\right)+\sum_{\mathrm{n}=0}^{\infty} \mathrm{y}_{\mathrm{n}} \mathrm{~b}_{\mathrm{ns}}\left(\mathrm{k}_{1}\right)-\sum_{\mathrm{n}=0}^{\infty} \mathrm{b}_{\mathrm{n}} \mathrm{a}_{\mathrm{ns}}\left(\mathrm{k}_{3}\right)=-\mathrm{i} \mathrm{k}_{1} \sum_{\mathrm{n}=0}^{\infty} \mathrm{B}_{0 \mathrm{n}}\left(\mathrm{~h}_{1}\right) \mathrm{a}_{\mathrm{ns}}\left(\mathrm{k}_{1}\right), \tag{29}\\
\sum_{\mathrm{n}=0}^{\infty} \mathrm{X}_{\mathrm{n}} \tilde{A}_{\mathrm{ns}}\left(\mathrm{k}_{1}\right)+\sum_{\mathrm{n}=0}^{\infty} \mathrm{y}_{\mathrm{n}} B_{\mathrm{ns}}\left(\mathrm{k}_{1}\right)-\frac{\rho_{3}}{\rho_{1}} \sum_{\mathrm{n}=0}^{\infty} \mathrm{b}_{\mathrm{n}} A_{\mathrm{ns}}\left(\mathrm{k}_{3}\right)=-\mathrm{i} k_{1} \sum_{\mathrm{n}=0}^{\infty} \mathrm{B}_{0 \mathrm{n}}\left(\mathrm{~h}_{1}\right) A_{\mathrm{ns}}\left(\mathrm{k}_{1}\right),
\end{array}\right\}
$$

where

$$
\begin{align*}
& \mathrm{a}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{\mathrm{j}}\right)=\int_{0}^{\pi} \mathrm{j}_{\mathrm{n}}\left(\xi_{\mathrm{j}}\right) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right) \mathrm{P}_{\mathrm{s}}\left(\cos \theta_{1}\right) \sin \theta_{1} \mathrm{~d} \theta_{1} . \\
& \mathrm{b}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{1}\right)=\int_{0}^{\pi} \mathrm{h}_{\mathrm{n}}^{(1)}\left(\xi_{\mathrm{j}}\right) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right) \mathrm{P}_{\mathrm{s}}\left(\cos \theta_{1}\right) \sin \theta_{1} \mathrm{~d} \theta_{1}, \\
& \tilde{\mathrm{a}}_{\mathrm{ns}}\left(\mathrm{k}_{\mathrm{j}}\right)=\frac{\mathrm{d}}{\mathrm{~d} \xi_{0}} \mathrm{j}_{\mathrm{n}}\left(\xi_{0}\right) \sum_{\mathrm{m}=0}^{\infty} \mathrm{a}_{\mathrm{ms}}\left(\mathrm{k}_{\mathrm{j}}\right) \mathrm{B}_{\mathrm{nm}}\left(\mathrm{~h}_{1}\right), \quad \mathrm{j}=1,3, \\
& \tilde{\mathrm{~b}}_{\mathrm{ns}}\left(\mathrm{k}_{1}\right)=4 \mathrm{i} \xi_{0}^{3} \sum_{\mathrm{p}=0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} \xi_{0}} \mathrm{j}_{\mathrm{p}}\left(\xi_{0}\right) \mathrm{R}_{\mathrm{sp}}\left(\theta_{0}\right) \mathrm{A}_{\mathrm{np}}\left(\mathrm{~h}_{1}\right) /(2 \mathrm{p}+1), \\
& \alpha_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{\mathrm{j}}\right)=\int_{0}^{\pi} \frac{\mathrm{d}}{\mathrm{~d} \xi_{\mathrm{j}}} \mathrm{j}_{\mathrm{n}}\left(\xi_{\mathrm{j}}\right) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right) \mathrm{P}_{\mathrm{s}}\left(\cos \theta_{1}\right) \sin \theta_{1} \mathrm{~d} \theta_{1}, \tag{30}\\
& \beta_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{1}\right)=\int_{0}^{\pi} \frac{\mathrm{d}}{\mathrm{~d} \xi_{1}} \mathrm{~h}_{\mathrm{n}}^{(1)}\left(\xi_{1}\right) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right) \mathrm{P}_{\mathrm{s}}\left(\cos \theta_{1}\right) \sin \theta_{1} \mathrm{~d} \theta_{1}, \\
& \tilde{\alpha}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{\mathrm{j}}\right)=\int_{0}^{\pi} \frac{\mathrm{r}^{\prime}\left(\theta_{1}\right)}{\mathrm{r}\left(\theta_{1}\right)^{2}} \mathrm{j}_{\mathrm{n}}\left(\xi_{\mathrm{j}}\right) \mathrm{P}_{\mathrm{n}}^{1}\left(\cos \theta_{1}\right) \mathrm{P}_{\mathrm{s}}\left(\cos \theta_{1}\right) \sin \theta_{1} \mathrm{~d} \theta_{1}, \\
& \tilde{\beta}_{n, s}\left(k_{1}\right)=\int_{0}^{\pi} \frac{r^{\prime}\left(\theta_{1}\right)}{r\left(\theta_{1}\right)^{2}} h_{n}^{(1)}\left(\xi_{1}\right) P_{n}^{1}\left(\cos \theta_{1}\right) P_{s}\left(\cos \theta_{1}\right) \sin \theta_{1} d \theta_{1} \text {, } \\
& \mathrm{A}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{j}} \alpha_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{\mathrm{j}}\right)-\tilde{\alpha}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{\mathrm{j}}\right), \quad \mathrm{B}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{1}\right)=\mathrm{k}_{1} \beta_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{1}\right)-\tilde{\beta}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{1}\right), \\
& \tilde{A}_{\mathrm{n}, \mathrm{~s}}\left(\mathrm{k}_{1}\right)=\frac{\mathrm{d}}{\mathrm{~d} \xi_{0}} \mathrm{j}_{\mathrm{n}}\left(\xi_{0}\right) \sum_{\mathrm{m}=0}^{\infty} \mathrm{A}_{\mathrm{ms}}\left(\mathrm{k}_{1}\right) \mathrm{B}_{\mathrm{nm}}\left(\mathrm{~h}_{1}\right) \text {. }
\end{align*}
$$

The infinite system (28) can be solved by the method of truncation [21].

5. Numerical experiments

Based on [23]:

$$
\left.\begin{array}{l}
\mathrm{h}_{\mathrm{n}}^{(1)}(\mathrm{kr}) \mathrm{P}_{\mathrm{n}}\left(\cos \theta_{1}\right)=\sum_{\mathrm{p}=0}^{\infty} \tilde{\mathrm{A}}_{\mathrm{np}}\left(\mathrm{~h}_{1}\right) \mathrm{h}_{\mathrm{p}}^{(1)}(\mathrm{kr}) \mathrm{P}_{\mathrm{p}}(\cos \theta), \mathrm{r}>\mathrm{h}_{1}, \tag{31}\\
\tilde{\mathrm{~A}}_{\mathrm{np}}\left(\mathrm{~h}_{1}\right)=\sum_{\sigma=|\mathrm{p}-\mathrm{n}|}^{\mathrm{p}+\mathrm{n}}(2 \sigma+1) \mathrm{i}^{\sigma+\mathrm{p}-\mathrm{n}} \mathrm{~b}_{\mathrm{p}}^{(\mathrm{n} 0 \sigma 0)} \mathrm{j}_{\sigma}\left(\mathrm{kh}_{1}\right)
\end{array}\right\}
$$

we present the function $\mathrm{p}_{2}^{(2)}\left(\mathrm{r}_{1}, \theta_{1}\right)$ in the coordinate system at the point O :

$$
\begin{equation*}
\mathrm{p}_{2}^{(2)}(\mathrm{r}, \theta)=\mathrm{P} \sum_{\mathrm{n}=0}^{\infty} \mathrm{N}_{\mathrm{n}} \mathrm{~h}_{\mathrm{n}}^{(1)}(\mathrm{kr}) \mathrm{P}_{\mathrm{n}}(\cos \theta), \quad \mathrm{N}_{\mathrm{n}}=\sum_{\mathrm{p}=0}^{\infty} \tilde{\mathrm{A}}_{\mathrm{pn}}\left(\mathrm{~h}_{1}\right) \mathrm{y}_{\mathrm{p}} \tag{32}
\end{equation*}
$$

Using the asymptotic expression for the function $h_{n}^{(1)}(\mathrm{kr})$ [21]:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{n}}^{(1)}(\mathrm{kr}) \approx(-\mathrm{i})^{\mathrm{n}+1} \mathrm{e}^{\mathrm{ikr}} / \mathrm{kr}, \quad \mathrm{kr} \rightarrow \infty \tag{33}
\end{equation*}
$$

we obtain the pressure in the far zone:

$$
\begin{equation*}
\mathrm{p}_{2}(\mathrm{r}, \theta)=\mathrm{P} \frac{\mathrm{e}^{\mathrm{ikr}}}{\mathrm{kr}} \mathrm{G}(\theta), \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
G(\theta)=\sum_{n=0}^{\infty}(-i)^{n+1}\left(X_{n} \frac{d}{d \xi_{0}} j_{n}\left(\xi_{0}\right)+f_{n}+\sum_{p=0}^{\infty} \tilde{A}_{p n}\left(h_{1}\right) y_{p}\right) P_{n}(\cos \theta) . \tag{35}
\end{equation*}
$$

The unknown coefficients X_{n}, y_{p} are found from the system (29). Using Mathcad [24] the function $G(\theta)$ has been calculated for some parameters of the problem. The spherical functions have been calculated by means of built-in functions Mathcad. The infinite system (36) has been solved by the method of truncation [21]. The computational experiment showed that the truncation order for the considered parameters of the problem can be equal to 25 . With this truncation the solution of the system (29) has accuracy 10^{-4}.

Figure 2 shows plots of function $G(\theta)$ for some values of the frequency f of the sound field. The remaining parameters are equal to: $\mathrm{h}_{1}=1.0 \mathrm{~m}, \mathrm{a}=0.3$ $\mathrm{m}, \mathrm{b}=2 \mathrm{a}, \mathrm{d}=0.2 \mathrm{~m}, \theta_{0}=\pi / 4$. The areas $\mathrm{D}_{1}, \mathrm{D}_{2}$ are filled with water $\left(\mathrm{c}_{1}=\mathrm{c}_{2}\right.$ $=1483 \mathrm{~m} / \mathrm{s}, \rho_{1}=\rho_{2}=1000 \mathrm{~kg} / \mathrm{m}^{3}$). The area D_{3} is filled with organic glass (c_{3} $\left.=2565 \mathrm{~m} / \mathrm{s}, \rho_{3}=1200 \mathrm{~kg} / \mathrm{m}^{3}\right)$.

Figure 3 shows plots of function $G(\theta)$ for some values of the angle θ_{0} of the thin unclosed spherical shell Γ_{1}. The remaining parameters are equal to: h_{1} $=0.8 \mathrm{~m}, \mathrm{a}=0.3 \mathrm{~m}, \mathrm{~b}=0.4 \mathrm{~m}, \mathrm{~d}=0,1 \mathrm{~m}, \mathrm{f}=1000 \mathrm{~Hz}$. The areas $\mathrm{D}_{1}, \mathrm{D}_{2}$ are filled with water $\left(c_{1}=c_{2}=1483 \mathrm{~m} / \mathrm{s}, \rho_{1}=\rho_{2}=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$. The area D_{3} is filled with ice ($c_{3}=3980 \mathrm{~m} / \mathrm{s}, \rho_{3}=900 \mathrm{~kg} / \mathrm{m}^{3}$).

Fig. 2. Graphs of function $G(\theta)$ for some values of the frequency f of the sound field

Fig. 3. Graphs of function $G(\theta)$ for some values of the angle θ_{0}

6. Conclusions

It has been shown that the solution of the problem of propagation of sound field by an unclosed spherical shell and a penetrable ellipsoid of rotation is reduced to the infinite system of linear algebraic equations of the second
kind. The equation of spheroidal boundary is considered in the spherical coordinates. The spherical radiator is considered as the source of the sound field located within the thin unclosed spherical shell. The addition theorems for spherical wave functions and the method of solution of the dual series equations in Legendre's polynomials have been used. The developed methodology can be practically used in sound screen production.

Acknowledgment

The research leading to these results has supported by funding from the People Programme (Marie Curie International Research Staff Exchange) of the EU FP7/20072013/ under REA grant agreement n° PIRSES-GA-2013-610547.

References

[1] Blauert J., Xiang N.: Acoustics for Engineers, Springer-Verlag, Berlin, Heidelberg 2010.
[2] Fuchs H. V.: Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control, Springer-Verlag, Berlin, Heidelberg 2013.
[7] Erofeenko V.T., Demidchik V.I., Malyi S.V., Kornev R.V.: Penetration of electromagnetic waves through composite screens containing ideally conducting helices, J. Eng. Physics Thermophysics, 84 (2011) 799-806.
[4] Ivanov N.I.: Engineering acoustics. Theory and practice of noise control, Logos, Moscow 2008 (in Russian).
[5] Kleshchev A.A., Sheiba L.S.: Scattering of a sound wave by ideal prolate spheroids. Acoustic J., 16 (1970) 264-268 (in Russian).
[6] Sidman R.D.: Scattering of acoustical waves by a prolate spherical obstacle, J. Acoust. Soc. America, 52 (1972), 879-883.
[7] Abramov A.A., Dyshko A.L, Konyukhova N.B., Levitina T.V.: On a numericalanalytic investigation of problems of the diffraction of a plane sound wave by ideal prolate spheroids and triaxial ellipsoids, Comput. Math. Math. Phys., 35 (1995) 1103-1123
[8] Lauchle G.C.: Short-wavelength acoustic diffraction by prolate spheroids. J. Acoust. Soc. America, 58 (1975) 568-575.
[9] Germon A., Lauchle G.C.: Axisymmetric diffraction of spherical waves by a prolate spheroid, J. Acoust. Soc. America, 65 (1979) 1322-1327.
[10] Varadan V.K., Varadan V.V., Dragonette L.R., Flax L.: Computation of rigid body by prolate spheroids using the T-matrix approach, J. Acoust. Soc. America, 71 (1982) 22-25.
[11] Sammelmann G.S., Trivett D.H., Hackmann R.H.: High-frequency scattering from rigid prolate spheroids, J. Acoust. Soc. America, 83 (1988) 46-54.
[12] Barton J.P., Wolf N.L., Zhang H., Tarawneh C.: Near-field calculations for a rigid spheroid with an arbitrary incident acoustic field, J. Acoust. Soc. America, 103 (2003) 1266-1222.
[13] Burke J.E.: Scattering by penetrable spheroids, J. Acoust. Soc. America, 43 (1968) 871-875.
[14] Kotsis A.D., Roumeliotis J.A.: Acoustic scattering by a penetrable spheroid, Acoust. Phys., 54 (2008) 153-167.
[15] Kleshchev A.A., Rostovcev D.M.: Scattering of a sound by elastic and liquid ellipsoidal shells of revolution, Acoustic J., 32 (1986) 691-694 (in Russian).
[16] Kleshchev A. A.: With reference to low frequency resonances of elastic spheroidal bodies, J. Techn. Acoust., 2 (1995) 27-28.
[17] Bao X.L., Uberall H., Niemiec J.: Experimental study of sound scaterring by elastic spheroids, J. Acoust. Soc. America, 102 (1997), 933-942.
[18] Tolokonnikov L. A., Lobanov A. V.: About scattering of plane sound wave by inhomogeneous elastic spheroid, Proc. Tula State University, Natural Sciences, 3 (2011) 119-125 (in Russian).
[19] Tolokonnikov L. A.: Diffraction of plane sound wave on elastic spheroid with arbitrary located spherical vacuity, Proc. Tula State University, Natural Sciences, 2 (2011) 169-175 (in Russian).
[20] Grinchenko V.T., Vovk I.V., Matsipura V.T.: Fundamentals of acoustics, Naukova dumka, Kiev 2007 (in Russian).
[21] Ivanov E. A.: Diffraction of electromagnetic waves on two bodies, Springfield, Washington 1970.
[22] Shushkevich G.Ch., Kiselyova N.N.: Penetration of sound field through multilayered spherical shell, Computer Sci., 3 (2013) 47-57 (in Russian).
[23] Erofeenko V.T.: Addition theorems, Nauka and Technika, Minsk 1989.
[24] Shushkevich G.Ch., Shushkevich S.V.: Computer technology in mathematics, The system Mathcad 14: in 2 parts, Grevsova, Minsk 2012 (in Russian).

ROZCHODZENIE SIĘ FALI AKUSTYCZNEJ PRZEZ OTWARTA SFERYCZNĄ POWŁOKĘ ORAZ PRZENIKALNĄ ELIPSOIDE

Streszczenie

W artykule przedstawiono wynik rozwiązania problemu osiowosymetrycznego rozchodzenia się fali akustycznej przez otwartą sferyczną powłokę oraz przenikalną elipsoidę ruchu obrotowego. Sferyczny radiator, jako źródło pola akustycznego umieszczono w cienkiej sferycznej powłoce. Równanie granicy sferoidalnej podano we współrzędnych sferycznych. Pole rozproszonego ciśnienia wyrażono w funkcjach fal sferycznych. Wykorzystując odpowiednie dodatkowe twierdzenia rozwiązanie problemu wartości granicznej zredukowano do rozwiązania podwójnych równań w wielomianach Legendre'a, które przetworzono do systemu nieskończonego liniowych równań algebraicznych drugiego rodzaju. Otrzymano wzór do obliczenia pola przestrzennego oraz wyniki numeryczne dla różnych wartości parametrów.

Słowa kluczowe: pole akustyczne, powłoka sferyczna, elipsoida ruchu obrotowego, równania podwójne, radiator sferyczny

DOI: 10.7862/rm. 2016.18

[^0]: ${ }^{1}$ Autor do korespondencji/corresponding author: Gennady Shushkevich, Yanka Kupala State Universy of Grodno, 22 Ozheshko St., 230023 Grodno, Belarus, e-mail: g_shu@tut.by

