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Gennady SHUSHKEVICH1 

PROPAGATION OF THE SOUND WAVE BY AN 
UNCLOSED SPHERICAL SHELL AND  
A PENETRABLE ELLIPSOID  

In this paper the result of solution of axisymmetric problem of propagation of 
sound wave by an unclosed spherical shell and a penetrable ellipsoid of rotation 
is presented. A spherical radiator is located in a thin unclosed spherical shell as 
a source of acoustic field. The equation of the spheroidal boundary is given in 
spherical coordinates. A scattered pressure field is expressed in terms of spheri-
cal wave functions. Using corresponding additional theorems the solution of 
boundary value problem is reduced to solving of dual equations in Legendre's 
polynomials, which are converted to infinite system of linear algebraic equations 
of the second kind. The formula for calculation of the far field and numerical re-
sults for different values of parameters are obtained. 

Keywords: sound field, spherical shell, ellipsoid of rotation, dual equations, 
spherical radiator 

1. Introduction 

The study of sound waves propagation in different media has a number of 
practical applications in electroacoustics, hydroacoustics, medical diagnostics, 
bioacoustics, creation of multi-layer sound-absorbing panels against noise and 
vibration [1-4]. Numerous publications describe the problems of propagation 
of sound field by different objects and they use different analytical and numer-
ical techniques. We will consider just a few publications related to the research 
topic. The propagation of the sound field by hard or soft, prolate or oblate 
spheroids using different techniques is considered in [5-12]. The results of the 
sound field propagation on permeable and elastic spheroids are studied in [13-
17]. The analytical description of the acoustic field scattered by a inhomoge-
neous elastic spheroid is obtained in [18]. The analytical solution to the dif-
fraction problem of the plane sound wave on an elastic spheroid with arbitrary 
located spherical cavity is constructed in [19].  
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In this paper analytical solution to axisymmetric problem of propagation 
of the sound wave by an unclosed thin spherical shell and a penetrable ellip-
soid of rotation is presented. A spherical radiator is located in a thin unclosed 
spherical shell as a source of acoustic field. The equation of the spheroidal 
boundary is given in spherical coordinates. The solution of boundary value 
problem is reduced to solving of dual equations in Legendre's polynomials 
which are converted to infinite system of linear algebraic equations of the sec-
ond kind. Numerical results are given for various values of parameters of the 
problem. 

2. Problem formulation 

Let a homogeneous space 3R  contain a thin unclosed spherical shell 1Γ  

located on a sphere Γ  of radius d  with the center at point O  and an ellipsoid 
shell S (fig. 1). We denote by 1D  the area of space bounded by the sphere Γ  

and by 3D  the area of space bounded by the ellipsoid shell S  then 
3

2 1 3D R \ (D D S)= Γ∪ ∪ ∪  holds. The distance between points O  and 1O  is 

equal to 1h . 

  
Fig. 1. Geometry of the problem 

A point radiator of sound wave oscillating with an angular frequency ω  
is located at the point O . Areas jD , j 1, 2,3= , are filled with material in 

which shear waves are not being spread. Let denote the density of medium by 
ρj and the speed of sound by cj  in jD , j 1, 2,3= ,  ρ1 = ρ2 . 

To solve this problem we introduce spherical coordinates with the point 
O  and the point 1O . The spherical shell 1Γ  and the ellipsoid shell S are de-
scribed as follows: 
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1 0{r d,  0 ,  0 2 }Γ = = ≤ θ ≤ θ < π ≤ ϕ ≤ π ,                                                  (1) 

1 1 1S {r r( ),  0 ,  0 2 }= = θ ≤ θ ≤ π ≤ ϕ ≤ π ,                                                   (2) 

where ( ) 2
1 1r a / 1 vsinθ = − θ , 2 2v e / (e 1)= −  stands for a prolate ellipsoid 

of  rotation, 2v e=  is used for an oblate ellipsoid of rotation, e  is the eccen-
tricity of the ellipse. 

Let cp  be a pressure of primary point radiator of sound field, jp  be 

a pressure of secondary sound field in the area jD , j 1,2,3= , then the real 

sound pressure is calculated by the formula ( )i t
j jP Re p e− ω= .  

Solution of the diffraction problem is reduced to finding pressuresjp , 

j 1, 2,3= , which satisfy: 
1) the Helmholtz equation [20] 

2
j j jp k p 0∆ + =  (3)

where 
2 2 2

2 2 2x y z

∂ ∂ ∂∆ = + +
∂ ∂ ∂

 is the Laplace operator, j jk / c=ω  is a wave 

number,  
2) boundary condition on the surface of the spherical shell 1Γ  (acoustical-

ly hard shell): 

( )
1

с 1p p 0
n Γ

∂ + =
∂�

,    (4)

where n
�

 is the normal to the surface 1Γ , 
3) boundary conditions on the surface of the ellipsoidal shell S : 

2 3S S
p p= ,        2 3

S S2 3

1 1
p p

n n

∂ ∂=
ρ ∂ ρ ∂� � ,   (5)

where n
�

 is the normal to the surface Sand the condition at infinity [20-23]: 

( ) ( )2
2

M

p M
lim r i kp M 0

r→∞

 ∂ 
− = ∂ 

, (6)

where M is an arbitrary point at the space. 
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The condition of the continuity of pressure on the open part of the spheri-
cal shell 1\Γ Γ  and the normal derivative on the surface of the sphere Γ  are 
given by [22, 23]: 

( )
11

c 1 2 \\
p p p Γ ΓΓ Γ

+ = ,       ( )c 1 2p p p
r rΓ

Γ

∂ ∂+ =
∂ ∂

.        (7)

3. Presentation of problem solution 

The initial pressure of sound field can be presented in the form [21]: 

( )(1)
c 1 n n 1 n n 0n

n 0

p (r, ) Pexp(ik r) / r P f h k r P (cos ), f ik
∞

=
θ = = θ = δ∑  (8) 

where ( )(1)
nh x  are the spherical Hankel functions, nP (cos )θ  are the Legendre 

polynomials, 0nδ  is the Kronecker delta, P  is constant.  

The pressure of the scattered sound field presented as a superposition of 
the basic solutions of the Helmholtz equation in spherical coordinates taking 
into account the condition at infinity (6): 

       
( ) ( )1 n n 1 n

n 0

p (r, ) P a j k r P cos , r d,
∞

=
θ = θ <∑  (9)

       
( ) ( ) ( )(1) (1)

2 n n 1 n
n 0

p r, P x h k r P cos , r d,
∞

=
θ = θ >∑  (10)

       
( ) ( ) ( ) ( )(2) (1)

2 1 1 n n 1 1 n 1 1 1
n 0

p r , P y h k r P cos , r r ,
∞

=
θ = θ > θ∑  (11)

       
( ) ( )3 1 1 n n 3 1 n 1 1 1

n 0

p (r , ) P b j k r P cos , r r( )
∞

=
θ = θ < θ∑  (12)

where (1) (2)
2 2 2 1 1p p (r, ) p (r , )= θ + θ , ( )nj x  are the spherical Bessel functions of 

the first kind.  
Unknown coefficients n n n na , b ,x , y  must be determined from the 

boundary conditions. 
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4. Fulfilment of boundary conditions 

First, we will express function ( )(2)
2 1 1p r , θ  through the spherical wave 

functions in the coordinate system with the origin at the point O using the for-
mulae [22, 23]: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(1)
n 1 n 1 nk 1 k k 1

k 0

k n
k n (n0k0) (1)

nk 1 1
k n

(n0q0) 2

h kr P cos A h j kr P cos , r h ,

A h 2k 1 i b h kh ,

b (nq00 | 0) , (nq00 | 0)  are theClebsch – Gordan coefficients,

∞

=
+

σ+ −
σ σ

σ= −

σ


θ = θ < 


= + 

= σ σ 


∑

∑  (13)

then 

      ( ) ( ) ( )(2)
2 n n 1 n

n 0

p r, P p j k r P cos ,
∞

=
θ = θ∑ ( )n k kn 1

k 0

p y A h
∞

=
=∑  (14)

Considering (8)-(10), (14) and taking into account the condition of or-
thogonality of the Legendre polynomials on the interval

 [ ]0; π  the boundary 

conditions (4), (7)  will become: 

      
( ) ( ) ( ) ( )

( )

(1)
n n 0 n n n 0 n 0

n 0 n o0 0

n n
n 0 0 1

n 0
n 0

0

d d
x h P cos p j P cos , 0 ,

d d

x f
P (cos ) 0, , k d.

d
j

d

∞ ∞

= =
∞

=


ξ θ = − ξ θ ≤ θ < θ ξ ξ 

− θ = θ < θ ≤ π ξ = 
ξ

ξ 

∑ ∑

∑
 

(15)

We introduce new coefficients Xn  by the formula 

       ( )n n n 0 n
0

d
x X j f , n 0, 1,...

d
= ξ + =

ξ
 (16)

and the small parameter 

      ( ) ( )
3

(1)0
n n 0 n 0

0 0

4i d d
g 1 j h

2n 1 d d

ξ= + ξ ξ
+ ξ ξ

 .                                                 (17)

From the asymptotic representations for functions (1)
n nj (x), h (x) , where 

n x>>  [21]: 
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n n

n

2 n!(x)
j (x)

(2n 1)!
≈

+
,  (1)

n n n

i(2n)!
h (x)

2 n!(x)
≈ − ,   (18)

follows that ( )2
ng O n−= . 

The dual series equations (15) take the form 

  
( )( ) ( ) ( )

( )

n n n n n n 0
n 0 n o

n n 0
n 0

2n 1 1 g X P cos (2n 1)(f p )P cos , 0 ,

X P cos 0, ,

∞ ∞

= =
∞

=


+ − θ = + + θ ≤ θ < θ 



θ = θ < θ ≤ π


∑ ∑

∑

ɶ ɶ

 (19)

where 

  ( )3 (1)
n 0 n n 0

0

d
f 4i f h / (2n 1)

d
= ξ ξ +

ξ
ɶ ,  ( )3

n 0 n n 0
0

d
p 4i a j / (2n 1)

d
= ξ ξ +

ξ
ɶ .      (20)

The dual series equations are transformed to the infinite system of linear 
algebraic equations of the second kind with the completely continuous opera-
tor using the integral representation for the Legendre polynomials [22]: 

     
( )n k nk 0 k k k nk 0

k 0 k 0

X g R ( )X p f R ( ), n 0, 1,...
∞ ∞

= =
− θ = + θ =∑ ∑ ɶɶ , (21)

where 

    

( ) ( ) ( )0 0 0
nk 0 0

n k

sin n k sin n k 1 sin n k1
R ( ) ,

n k n k 1 n k
=

 − θ + + θ  − θ
θ = − = θ π − + + − 

. (22)

Now we present the function ( )(1)
2p r, θ  through the spherical wave func-

tions in the coordinate system with origin at the point O1 using formula [22, 
23]: 

    (1)
n n nk 1 k 1 k 1 1 1

k 0

h (kr)P (cos ) B (h ) j (kr )P (cos ), r h
∞

=
θ = θ <∑ , (23)

then 
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( ) ( )(1)

2 1 1 n n 1 1 n 1
n 0

p r , P z j (k r )P cos
∞

=
θ = θ∑ , ( )n p pn 1

p 0

z x B h
∞

=
=∑ ,                (24)

where 

     

( ) ( )
k n

n0k0k n (1)
nk 1 1 1

k n

B (h ) 2k 1 ( 1) i b h (k h )
+

σ σ+ −
σ σ

σ= −
= + −∑ .   (25)

In view of the fact that 

     1 1

1
j 1 1 j 1 1 j 1 12

S 1 11 r r( )

1
n 1 n 1

1

r ( )
p (r , ) p (r , ) p (r , ) , j 2,3,

n r r( )

d
P (cos ) P (cos ),

d

= θ

′ θ∂ ∂ ∂θ = θ − θ = 
∂ ∂ ∂θθ 


θ = θ θ 

�

 (26)

boundary conditions (5) together with (11), (12), (24) take the form 

      

( ) ( ) ( )

( ) ( )

(1)
n n 1 1 n 1 n n 1 1 n 1

n 0 n 0

n n 3 1 n 1
n 0

z j (k r( ))P cos y h k r( ) P cos

b j k r( ) P cos ,

∞ ∞

= =
∞

=


θ θ + θ θ =



= θ θ


∑ ∑

∑
 (27)

11
n 1 n 1 n 1 n 1 n 12

n 0 1

(1) (1) 11
n 1 n 1 n 1 n 1 n 12

n 0 1

11 1
n 3 n 3 n 1 n 3 n 1 j j 12

n 03 1

r ( )
z k j ( )P (cos ) j ( )P (cos )

r( )

r ( )
y k h ( )P (cos ) h ( )P (cos )

r( )

r ( )
b k j ( )P (cos ) j ( )P (cos ), k r( ), j 1,3.

r( )

∞

=

∞

=

∞

=

′ θ′ ξ θ − ξ θ + θ 
′ θ ′+ ξ θ − ξ θ = θ

′ρ θ′= ξ θ − ξ θ ξ = θ =
ρ θ

∑

∑

∑






 (28)

Let eliminate coefficients nz  in (27), (28) using (24), (16). We multiply 

the resulting equations by ( )sP cos sin dθ θ θ , s 0, 1, 2,...= , and integrate from 

0 to π , and link with (21) then we have 
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( ) ( )

( ) ( )

( ) ( )

3 (1)
n sn 0 ns n ns 1 n 0 1 0 0 s0 0

n 0 n 0 0

n ns 1 n ns 1 n ns 3 1 0n 1 ns 1
n 0 n 0 n 0 n 0

3
n ns 1 n ns 1 n ns 3 1 0n 1

n 0 n 0 n 0 n 01

d
g R ( ) X b (k )y 4 k h R ( ),s 0,1,2,...,

d

X a k y b (k ) b a (k ) ik B h a (k ),

X A k y B (k ) b A (k ) ik B h

∞ ∞

= =
∞ ∞ ∞ ∞

= = = =
∞ ∞ ∞

= = = =

θ − δ + = ξ ξ θ =
ξ

+ − = −

ρ
+ − =−

ρ

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

ɶ

ɶ

ɶ
ns 1A (k ),

∞











∑

 (29)

where 

     

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

n,s j n j n 1 s 1 1 1
0

(1)
n,s 1 n j n 1 s 1 1 1

0

ns j n 0 ms j nm 1
m 00

3
ns 1 0 p 0 sp 0 np 1

p 0 0

n,s j n j n 1 s 1
j

a (k ) j ( )P cos P cos sin d .

b (k ) h P cos P cos sin d ,

d
a k j a k B h , j 1,3,

d

d
b (k ) 4i j R ( )A h / (2p 1),

d

d
(k ) j ( )P cos P cos

d

π

π

∞

=
∞

=

= ξ θ θ θ θ

= ξ θ θ θ θ

= ξ =
ξ

= ξ ξ θ +
ξ

α = ξ θ θ
ξ

∫

∫

∑

∑

ɶ

ɶ

( ) ( )

( ) ( )

( ) ( )

1 1
0

(1)
n,s 1 n 1 n 1 s 1 1 1

10

11
n,s j n j n 1 s 1 1 12

10

(1) 11
n,s 1 n 1 n 1 s 1 1 12

10

n,s j j n,s j n,s

sin d ,

d
(k ) h ( )P cos P cos sin d ,

d

r ( )
(k ) j ( )P cos P cos sin d ,

r( )

r ( )
(k ) h ( )P cos P cos sin d ,

r( )

(k ) k (k ) (k

π

π

π

π

θ θ

β = ξ θ θ θ θ
ξ

′ θα = ξ θ θ θ θ
θ

′ θβ = ξ θ θ θ θ
θ

Α = α − α

∫

∫

∫

∫

ɶ

ɶ

ɶ

( ) ( ) ( )

j n,s 1 1 n,s 1 n,s 1

n,s 1 n 0 ms 1 nm 1
m 00

), B (k ) k (k ) (k ),

d
(k ) j A k B h .

d

∞

=






























= β − β 

Α = ξ
ξ 

∑

ɶ

ɶ

 

(30)

The infinite system (28) can be solved by the method of truncation [21]. 
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5. Numerical experiments 

Based on [23]: 

    

  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(1) (1)
n 1 n 1 np 1 p p 1

p 0

p n
p n (n0 0)

np 1 p 1
p n

h kr P cos A h h kr P cos , r h ,

A h 2 1 i b j kh

∞

=

+
σ+ − σ

σ
σ= −


θ = θ > 



= σ +



∑

∑

ɶ

ɶ

 (31)

we present the function (2)
2 1 1p (r , )θ  in the coordinate system at the point O: 

      
( ) ( ) ( ) ( )(2) (1)

2 n n n n pn 1 p
n 0 p 0

p r, P N h kr P cos , N A h y
∞ ∞

= =
θ = θ =∑ ∑ ɶ  (32)

Using the asymptotic expression for the function (1)
nh (kr) [21]: 

    
 

(1) n 1 ikr
nh (kr)  (-i) e / kr, kr+≈ → ∞  (33)

we obtain the pressure in the far zone: 

    
 

ikr

2
e

p (r, ) P G( )
kr

θ = θ , (34)

where 

    
 ( )n 1

n n 0 n pn 1 p n
n 0 p 00

d
G( ) ( i) X j f A (h )y P (cos )

d

∞ ∞
+

= =

 
θ = − ξ + + θ  ξ 
∑ ∑ ɶ . (35)

The unknown coefficients Xn, yp are found from the system (29). Using 
Mathcad [24] the function G(θ) has been calculated for some parameters of the 
problem. The spherical functions have been calculated by means of built-in 
functions Mathcad. The infinite system (36) has been solved by the method of 
truncation [21]. The computational experiment showed that the truncation or-
der for the considered parameters of the problem can be equal to 25. With this 
truncation the solution of the system (29) has accuracy 10-4. 

Figure 2 shows plots of function G(θ) for some values of the frequency 
f of the sound field. The remaining parameters are equal to: h1 = 1.0 m, a = 0.3 
m, b = 2a, d = 0.2 m, 0 / 4θ = π . The areas D1, D2 are filled with water (c1 = c2 

= 1483 m/s, ρ1 = ρ2 = 1000 kg/m3). The area D3 is filled with organic glass (c3 

= 2565 m/s, ρ3 = 1200 kg/m3). 
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Figure 3 shows plots of function G(θ) for some values of the angle 0θ  of 
the thin unclosed spherical shell Г1. The remaining parameters are equal to: h1 
= 0.8 m, a = 0.3 m, b = 0.4 m, d = 0,1 m, f 1000= Hz. The areas D1, D2 are 
filled with water (c1 = c2 = 1483 m/s, ρ1 = ρ2 = 1000 kg/m3). The area D3 is 
filled with ice (c3 = 3980 m/s, ρ3 = 900 kg/m3). 

 

 
Fig. 2. Graphs of function G(θ) for some values of the frequency f of the 
sound field  

  
Fig. 3. Graphs of function G(θ) for some values of the angle 0θ  

6. Conclusions 

It has been shown that the solution of the problem of propagation of 
sound field by an unclosed spherical shell and a penetrable ellipsoid of rotation 
is reduced to the infinite system of linear algebraic equations of the second 
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kind. The equation of spheroidal boundary is considered in the spherical coor-
dinates. The spherical radiator is considered as the source of the sound field 
located within the thin unclosed spherical shell. The addition theorems for 
spherical wave functions and the method of solution of the dual series equa-
tions in Legendre’s polynomials have been used. The developed methodology 
can be practically used in sound screen production. 
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ROZCHODZENIE SI Ę FALI AKUSTYCZNEJ PRZEZ OTWART Ą 
SFERYCZNĄ POWŁOKĘ ORAZ PRZENIKALN Ą ELIPSOIDĘ 

S t r e s z c z e n i e 

W artykule przedstawiono wynik rozwiązania problemu osiowosymetrycznego rozcho-
dzenia się fali akustycznej przez otwartą sferyczną powłokę oraz przenikalną elipsoidę ruchu 
obrotowego. Sferyczny radiator, jako źródło pola akustycznego umieszczono w cienkiej sfe-
rycznej powłoce. Równanie granicy sferoidalnej podano we współrzędnych sferycznych. Pole 
rozproszonego ciśnienia wyrażono w funkcjach fal sferycznych. Wykorzystując odpowiednie 
dodatkowe twierdzenia rozwiązanie problemu wartości granicznej zredukowano do rozwiązania 
podwójnych równań w wielomianach Legendre'a, które przetworzono do systemu nieskończo-
nego liniowych równań algebraicznych drugiego rodzaju. Otrzymano wzór do obliczenia pola 
przestrzennego oraz wyniki numeryczne dla różnych wartości parametrów. 
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