Journal of Mathematics and Applications
8/35, DOI: 10.7862/rf.2012.8
Complete convergence under special hypotheses
G. Stoica
DOI: 10.7862/rf.2012.8
Abstract
We prove Baum-Katz type theorems along subsequences of random variables under Komlós-Saks and Mazur-Orlicz type boundedness hypotheses.
References
- J.K. Brooks, R.V. Chacon, Continuity and compactness of measures, Adv. Math. 37 (1980) 16-26.
- C. Castaing, M. Saadoune, Komlos type convergence for random variables and random sets with applications to minimization problems, Adv. Math. Econ. 10 (2007) 1-29.
- S.J. Dilworth, Convergence of series of scalar- and vector-valued random variables and a subsequence principle in L2, Trans. Amer. Math. Soc. 301 (1987) 375-384.
- E. Lesigne, D. Volny, Large deviations for martingales, Stoch. Proc. Appl. 96 (2001) 143-159.
- G. Stoica, The Baum-Katz theorem for bounded subsequences, Stat. Prob. Lett. 78 (2008), 924-926.
- H. von Weizsacker, Can one drop the L^1-boundedness in Komlos' subsequence theorem? Amer. Math. Monthly 111 (2004) 900-903.
About this Article
TITLE:
Complete convergence under special hypotheses
AUTHORS:
G. Stoica
AUTHORS AFFILIATIONS:
Department of Mathematical Sciences, University of New Brunswick, Saint John NB, Canada
JOURNAL:
Journal of Mathematics and Applications
8/35
KEY WORDS AND PHRASES:
Complete convergence, boundedness hypotheses, law of large numbers
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/8
DOI:
10.7862/rf.2012.8
URL:
http://dx.doi.org/10.7862/rf.2012.8
RECEIVED:
2010-12-17
ACCEPTED:
2011-10-27
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow