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1 Introduction and main results

Throughout the paper we shall work with real valued random variables on a complete
probability space (2, F, P). The following Baum-Katz type result (cf. [5]) quantifies
the rate of convergence in the strong law of large numbers for general sequences of
random variables in the form of a complete convergent series:

Theorem 0. If (X,)n>1 is an LP-norm bounded sequence for some 0 < p < 2,
i.e., Sup,>1 [|[Xnllp < C for some C > 0, then there exists a subsequence (Y )n>1 of
(Xn)n>1 such that, for all 0 < r < p, we have

n

in”/T_QP({w €N ZYJ(w) > snl/r}> < oo fore > 0. (1)
n=1

j=1

In particular the strong law of large numbers holds along the subsequence (Yy,)n>1,
i.e., Y /n'/? =0 a.s.

The examples in [6], [4] and [3] show that (1) may fail if one drops the LP-norm
boundedness hypothesis. Inspired by the celebrated Komlds-Saks and Mazur-Orlicz
extensions of the law of large numbers, in this note we shall prove two versions of
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the Baum-Katz theorem under special boundedness hypotheses, more general than
LP—norm boundedness condition required in Theorem 0.

Theorem 1. Let 0 < p < 2 and (Xp)n>1 a sequence such that lim sup,, | X, (w)|? < oo
forallw € Q. Then there exists a subsequence (Y )n>1 of (Xn)n>1 such that (1) holds
for all0 < r <p.

Theorem 2. Let 0 < p < 2 and (X,,)n>1 @ sequence satisfying the following con-
dition: for every subsequence (X,)n>1 of (Xn)n>1 and n > 1, there exists a con-

vex combination Z,, of {\Xn|p, | X1, .. .}, such that limsup,, | Z,(w)| < oo for all

w € Q. Then there exists a subsequence (Yy,)n>1 of (Xn)n>1 such that (1) holds for
all0 <r <p.

Remarks. (i) Both Theorems 1 and 2 hold for uniformly bounded sequences (X, )n>1
in LP,0 < p < 2. On [0, 1] endowed with the Lebesgue measure, the sequence X, (w) =
n? if 0 < w < 1/n and 0 otherwise, satisfies Theorem 2 because X,, — 0 Lebesgue-a.s.,
yet it does not satisfy Theorem 1 with p = 1 because it is not bounded in L![0,1].
As a matter of fact, both Theorems 1 and 2 may fail for unbounded sequences, e.g.,
X, =n.

(ii) The idea beneath Theorems 1 and 2 is to construct a rich family of uniformly
integrable subsequences of (X,,),>1 as in [2], for which condition (1) holds; note that
the hypotheses in [6] and [3] cannot produce Baum-Katz type theorems, as the families
of subsequences therein are no longer uniformly integrable.

2 Proofs of the results

Proof of Theorem 1. Note that limsup,, | X, (w)|P < 0o is equivalent to

sup | X, (w)|P < o0
n>1

for all w € Q). For any natural number m > 1, let us define

A = {w € Q:sup | X, (w)|P < m}.

n>1

Assume that r < p and fix ¢ > p/r — 1. As P(A,,) — 1 as m — 0o, we can choose

my > 1 such that P(Aml) > 1 —27% Integrating and applying Fatou’s lemma, we

obtain

sup/ | X0 (W) |PAP(w) < my. (2)
A

n>1

my

We now apply the Biting Lemma (cf. [1]) to the sequence (X,),>1 and obtain:
an increasing sequence of sets (Bj)r>1 in F with P(B}) — 1 as k — oo, and a
subsequence (X}),>1 of (X,)n>1 such that (X!),>; is uniformly integrable on each
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set A, N B}, k > 1. The latter fact together with estimate (2) show that Theorem
0 applies to the sequence (X!),>1 and gives

(o) n
Zn”/TQP({w € Am, N B > _Xj(w)| > enl/r}> < oo fore>0and k> 1.
n=1 7j=1

Another application of the Biting Lemma to (X}),>1, instead of (X,,),>1, produces:
a measurable set A,,, with P(A4,,,) > 1—37%, an increasing sequence of sets (B )s>1
in F with P(B?) — 1 as k — oo, and a subsequence (X2),>1 of (X}),>1 such that
(X2),>1 is uniformly integrable on each set A,,, N B, k > 1, such that

an/T2P<{w € A, N B} : ZXJQ(w) > Enl/r}> < oo fore>0and k> 1.
n=1 j=1

By induction, we construct for each ¢ > 1: a measurable set A,,, with P (Amj) >
1 — (i 4+ 1)7%, an increasing sequence of sets (Bj)r>1 in F with P(B) — 1 as

k — 0o, and a subsequence (X ),>1 of (Xi71),>1, with the convention that (X2),>1

is precisely (X,,)n>1, such that (X?),,>1 is uniformly integrable on each set A,,, N B},
k>1,and

Zn”/TQP({w € A, NB;: ZXJ’(w) > 5n1/r}) < oo for e >0and k,i > 1.
n=1

j=1

Now define Y,, := X' and, using a diagonal argument in the above formula, we obtain
that

n

an/r—2P<{w € A, NBy - ZYJ(W) > 5n1/r}> <oofore>0and k>1. (3)
n=1

Jj=1

As P(B}) —+ 1 as k — oo for all n > 1, formula (3) and the dominated convergence
theorem imply that

oo

an/T2P<{w €An, : ZYj(w) > sn”’”}) < oo for e > 0. (4)
j=1

n=1

Therefore, to prove that series (1) converges for our subsequence (Y,,),>1 and r < p,
it suffices to prove (4) with A, replaced by its complement, i.e.,

inp/r2P<{w €eQ\ A4, : iyj(w) > anl/r}> < o0 for e > 0. (5)

n=1 j=1

Indeed, the latter series is

< an/r2p<{w €O\ Amn}> < an/“%l < o0 (6)
n=1 n=1
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as P(An,,) >1—=(n+1)"">1—n"%and a > p/r — 1. The proof is achieved in the
case r < p.

If » = p, then we modify the induction process as follows: choose measurable sets
Ay, with P(Ay,,) > i/(i+1) for all i > 1; as such, the diagonal argument above gives
the following replacement of (4):

o0 1 n
- Ap DY, Lr f 0.
nz_:ln({we N J; (w)| > en }) < oo for € >

To show that series (1) converges for our subsequence (Y,),>1 and r = p, it suffices
to prove the following replacement of (5):

o0 1 n
ZP({w eQ\ A4, : ZY](w) > snl/’"}> < oo for € > 0.
n:ln j=1

Indeed, the latter series is
=1 = 1
< —P Q\ A < _
<2 G“e \MJ>—Z%m+U<“

by the choice of P(A,,,),n > 1. The latter is the substitute of (6) in the case r = p,
and the proof is now complete.

Proof of Theorem 2. By hypothesis we can write

Zy = Z )\?|)~(n+i|p for some A" > 0 with Z A =1,
icly, i€l,

and where I,, are finite subsets of {0,1,2,...}. In addition, the sequence (Z,)n>1
satisfies the condition sup,,>; |Z,(w)|? < oo for all w € Q. For any natural number

m > 1, let us define 4,, = {w € Q i sup,>q [Zn(w)| < m}. As P(A,,) — 1 as

m — oo, we can choose my > 1 such that P(Aml) >1-—27%or 1/2, according to
p > rorp=r, and where a > p/r — 1 is fixed. Integrating and applying Fatou’s
lemma, we obtain

sup Z )\7/ | X i (W)|PAP(w) < my.
nZlieIn Amy

Hence there is a subsequence (Xn)n21 of (Xn)n21 (therefore of (X,,),>1 as well), such
that
sup [ Xa)PdP(w) < mi,

A

n>1

my

which is precisely eq. (2) along a subsequence. The remainder of the proof goes
exactly as in the proof of Theorem 1.
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