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1 Introduction and main results

Throughout the paper we shall work with real valued random variables on a complete
probability space (Ω,F , P ). The following Baum-Katz type result (cf. [5]) quantifies
the rate of convergence in the strong law of large numbers for general sequences of
random variables in the form of a complete convergent series:

Theorem 0. If (Xn)n≥1 is an Lp-norm bounded sequence for some 0 < p < 2,
i.e., supn≥1 ||Xn||p ≤ C for some C > 0, then there exists a subsequence (Yn)n≥1 of
(Xn)n≥1 such that, for all 0 < r ≤ p, we have

∞∑
n=1

np/r−2P

({
ω ∈ Ω :

∣∣∣∣∣∣
n∑

j=1

Yj(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0. (1)

In particular the strong law of large numbers holds along the subsequence (Yn)n≥1,
i.e., Yn/n

1/p → 0 a.s.

The examples in [6], [4] and [3] show that (1) may fail if one drops the Lp-norm
boundedness hypothesis. Inspired by the celebrated Komlós-Saks and Mazur-Orlicz
extensions of the law of large numbers, in this note we shall prove two versions of
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the Baum-Katz theorem under special boundedness hypotheses, more general than
Lp−norm boundedness condition required in Theorem 0.

Theorem 1. Let 0 < p < 2 and (Xn)n≥1 a sequence such that lim supn |Xn(ω)|p <∞
for all ω ∈ Ω. Then there exists a subsequence (Yn)n≥1 of (Xn)n≥1 such that (1) holds
for all 0 < r ≤ p.

Theorem 2. Let 0 < p < 2 and (Xn)n≥1 a sequence satisfying the following con-

dition: for every subsequence (X̃n)n≥1 of (Xn)n≥1 and n ≥ 1, there exists a con-

vex combination Zn of
{
|X̃n|p, |X̃n+1|p, . . .

}
, such that lim supn |Zn(ω)| < ∞ for all

ω ∈ Ω. Then there exists a subsequence (Yn)n≥1 of (Xn)n≥1 such that (1) holds for
all 0 < r ≤ p.

Remarks. (i) Both Theorems 1 and 2 hold for uniformly bounded sequences (Xn)n≥1
in Lp, 0 < p < 2. On [0, 1] endowed with the Lebesgue measure, the sequence Xn(ω) =
n2 if 0 ≤ ω ≤ 1/n and 0 otherwise, satisfies Theorem 2 because Xn → 0 Lebesgue-a.s.,
yet it does not satisfy Theorem 1 with p = 1 because it is not bounded in L1[0, 1].
As a matter of fact, both Theorems 1 and 2 may fail for unbounded sequences, e.g.,
Xn = n.

(ii) The idea beneath Theorems 1 and 2 is to construct a rich family of uniformly
integrable subsequences of (Xn)n≥1 as in [2], for which condition (1) holds; note that
the hypotheses in [6] and [3] cannot produce Baum-Katz type theorems, as the families
of subsequences therein are no longer uniformly integrable.

2 Proofs of the results

Proof of Theorem 1. Note that lim supn |Xn(ω)|p <∞ is equivalent to

sup
n≥1
|Xn(ω)|p <∞

for all ω ∈ Ω. For any natural number m ≥ 1, let us define

Am =
{
ω ∈ Ω : sup

n≥1
|Xn(ω)|p ≤ m

}
.

Assume that r < p and fix a > p/r − 1. As P (Am) → 1 as m → ∞, we can choose
m1 ≥ 1 such that P

(
Am1

)
> 1 − 2−a. Integrating and applying Fatou’s lemma, we

obtain

sup
n≥1

∫
Am1

|Xn(ω)|pdP (ω) ≤ m1. (2)

We now apply the Biting Lemma (cf. [1]) to the sequence (Xn)n≥1 and obtain:
an increasing sequence of sets (B1

k)k≥1 in F with P (B1
k) → 1 as k → ∞, and a

subsequence (X1
n)n≥1 of (Xn)n≥1 such that (X1

n)n≥1 is uniformly integrable on each
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set Am1
∩ B1

k, k ≥ 1. The latter fact together with estimate (2) show that Theorem
0 applies to the sequence (X1

n)n≥1 and gives

∞∑
n=1

np/r−2P

({
ω ∈ Am1

∩B1
k :

∣∣∣∣∣∣
n∑

j=1

X1
j (ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0 and k ≥ 1.

Another application of the Biting Lemma to (X1
n)n≥1, instead of (Xn)n≥1, produces:

a measurable set Am2
with P

(
Am2

)
> 1−3−a, an increasing sequence of sets (B2

k)k≥1
in F with P (B2

k) → 1 as k → ∞, and a subsequence (X2
n)n≥1 of (X1

n)n≥1 such that
(X2

n)n≥1 is uniformly integrable on each set Am2
∩B2

k, k ≥ 1, such that

∞∑
n=1

np/r−2P

({
ω ∈ Am2

∩B2
k :

∣∣∣∣∣∣
n∑

j=1

X2
j (ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0 and k ≥ 1.

By induction, we construct for each i ≥ 1: a measurable set Ami
with P

(
Ami

)
>

1 − (i + 1)−a, an increasing sequence of sets (Bi
k)k≥1 in F with P (Bi

k) → 1 as
k →∞, and a subsequence (Xi

n)n≥1 of (Xi−1
n )n≥1, with the convention that (X0

n)n≥1
is precisely (Xn)n≥1, such that (Xi

n)n≥1 is uniformly integrable on each set Ami ∩Bi
k,

k ≥ 1, and

∞∑
n=1

np/r−2P

({
ω ∈ Ami

∩Bi
k :

∣∣∣∣∣∣
n∑

j=1

Xi
j(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0 and k, i ≥ 1.

Now define Yn := Xn
n and, using a diagonal argument in the above formula, we obtain

that

∞∑
n=1

np/r−2P

({
ω ∈ Amn∩Bn

k :

∣∣∣∣∣∣
n∑

j=1

Yj(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0 and k ≥ 1. (3)

As P (Bn
k ) → 1 as k → ∞ for all n ≥ 1, formula (3) and the dominated convergence

theorem imply that

∞∑
n=1

np/r−2P

({
ω ∈ Amn :

∣∣∣∣∣∣
n∑

j=1

Yj(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0. (4)

Therefore, to prove that series (1) converges for our subsequence (Yn)n≥1 and r < p,
it suffices to prove (4) with Amn replaced by its complement, i.e.,

∞∑
n=1

np/r−2P

({
ω ∈ Ω \Amn

:

∣∣∣∣∣∣
n∑

j=1

Yj(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0. (5)

Indeed, the latter series is

≤
∞∑

n=1

np/r−2P

({
ω ∈ Ω \Amn

})
≤
∞∑

n=1

np/r−2−1 <∞ (6)
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as P
(
Amn

)
> 1− (n+ 1)−a > 1− n−a and a > p/r− 1. The proof is achieved in the

case r < p.
If r = p, then we modify the induction process as follows: choose measurable sets

Ami with P (Ami) > i/(i+1) for all i ≥ 1; as such, the diagonal argument above gives
the following replacement of (4):

∞∑
n=1

1

n

({
ω ∈ Amn

:

∣∣∣∣∣∣
n∑

j=1

Yj(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0.

To show that series (1) converges for our subsequence (Yn)n≥1 and r = p, it suffices
to prove the following replacement of (5):

∞∑
n=1

1

n
P

({
ω ∈ Ω \Amn

:

∣∣∣∣∣∣
n∑

j=1

Yj(ω)

∣∣∣∣∣∣ > εn1/r
})

<∞ for ε > 0.

Indeed, the latter series is

≤
∞∑

n=1

1

n
P

({
ω ∈ Ω \Amn

})
≤
∞∑

n=1

1

n(n+ 1)
<∞

by the choice of P (Amn
), n ≥ 1. The latter is the substitute of (6) in the case r = p,

and the proof is now complete.

Proof of Theorem 2. By hypothesis we can write

Zn =
∑
i∈In

λni |X̃n+i|p for some λni ≥ 0 with
∑
i∈In

λni = 1,

and where In are finite subsets of {0, 1, 2, . . .}. In addition, the sequence (Zn)n≥1
satisfies the condition supn≥1 |Zn(ω)|p < ∞ for all ω ∈ Ω. For any natural number

m ≥ 1, let us define Am =
{
ω ∈ Ω : supn≥1 |Zn(ω)| ≤ m

}
. As P (Am) → 1 as

m → ∞, we can choose m1 ≥ 1 such that P
(
Am1

)
> 1 − 2−a or 1/2, according to

p > r or p = r, and where a > p/r − 1 is fixed. Integrating and applying Fatou’s
lemma, we obtain

sup
n≥1

∑
i∈In

λni

∫
Am1

|X̃n+i(ω)|pdP (ω) ≤ m1.

Hence there is a subsequence (X̄n)n≥1 of (X̃n)n≥1 (therefore of (Xn)n≥1 as well), such
that

sup
n≥1

∫
Am1

|X̄n(ω)|pdP (ω) ≤ m1,

which is precisely eq. (2) along a subsequence. The remainder of the proof goes
exactly as in the proof of Theorem 1.
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