Journal of Mathematics and Applications
10/41, DOI: 10.7862/rf.2018.10
The Real and Complex Convexity
Abidi Jamel
DOI: 10.7862/rf.2018.10
Abstract
References
- J. Abidi, Sur quelques problèmes concernant les fonctions holomorphes et plurisousharmoniques, Rend. Circ. Mat. Palermo 51 (2002) 411-424.
- J. Abidi, M.L. Ben Yattou, Le minimum de deux fonctions plurisousharmoniques et une nouvelle caractérisation des fonctions holomorphes, Math. Bohem. 136 (2011) 301-310.
- J. Abidi, Contribution à l'étude des fonctions plurisousharmoniques convexes et analytiques, Serdica Math. J. 40 (2014) 329-388.
- S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer-Verlag New York, 1992.
- C.A. Berenstein, R. Gay, Complex Variables. An Introduction, Graduate Texts In Mathematics 125, Springer Verlag, New York, 1991.
- U. Cegrell, Removable singularities for plurisubharmonic functions and related problems, Proc. Lond. Math. Soc. 36 (1978) 310-336.
- U. Cegrell, Removable singularity sets for analytic functions having modulus with bounded Laplace mass, Proc. Amer. Math. Soc. 88 (1983) 283-286.
- U. Cegrell, L. Hed, Subextension and approximation of negative plurisubharmonic functions, Michigan Math. J. 56 (2008) 593-601.
- D. Coman, V. Guedj, A. Zeriahi, Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math. 676 (2013) 33-49.
- J.B. Conway, Functions of One Complex Variable II, Springer-Verlag, 1995.
- A. Edigarian, J. Wiegerinck, The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J. 52 (2003) 1663-1680.
- A. Edigarian, J. Wiegerinck, Determination of the pluripolar hull of graphs of certain holomorphic functions, Ann. Inst. Fourier, Grenoble 54 (2004) 2085-2104.
- R.C. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Prentice - Hall, Englewood Cliffs, 1965.
- G.M. Henkin, J. Leiterer, Theory of Functions on Complex Manifolds, Birkhäuser, Boston, Mass., 1984.
- M. Hervé, Les Fonctions Analytiques, Presses Universitaires de France, 1982.
- L. Hörmander, An Introduction to Complex Analysis in Several Variables, Third Edition (revised), Mathematical Library, Vol. 7, North Holland, Amsterdam-New York-Oxford-Tokyo, 1990.
- L. Hörmander, Notions of Convexity, Birkhäuser, Basel-Boston-Berlin, 1994.
- J. Hyvönen, J. Rühentaus, On the extension in the Hardy classes and in the Nevanlinna class, Bull. Soc. Math. France 112 (1984) 469-480.
- M. Jarnicki, P. Pug, Extension of Holomorphic Functions, de Gruyter, Berlin, 2000.
- M. Klimek, Pluripotential Theory, Clarendon Press, Oxford, 1991.
- S.G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982.
- F. Lárusson, R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998) 1-39.
- F. Lárusson, R. Sigurdsson, Siciak-Zahariuta extremal functions, analytic discs and polynomial hulls, Math. Ann. 345 (2009) 159-174.
- P. Lelong, Fonctions Plurisousharmoniques et Formes Différentielles Positives, Gordon et Breach, New-York et Dunod, Paris, 1969.
- P. Lelong, Définition des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942) 398-400.
- P. Lelong, Sur les suites des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942) 454-456.
- P. Lelong, Les fonctions plurisousharmoniques, Ann. Sci. Ecole Norm. Sup. 62 (1945) 301-338.
- E. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993) 85-144.
- E. Poletsky, The minimum principle, Indiana Univ. Math. J. 51 (2002) 269-303.
- R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, 1986.
- J. Riihentaus, On the extension of separately hyperharmonic functions and Hp-functions, Michigan Math. J. 31 (1984) 99-112.
- L.I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence, RI 1974.
- W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
- W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.
- V.S. Vladimirov, Les fonctions de plusieurs variables complexes (et leur application à la théorie quantique des champs), Paris: Dunod, 1967.
About this Article
TITLE:
The Real and Complex Convexity
AUTHORS:
Abidi Jamel
AUTHORS AFFILIATIONS:
Département de Mathématiques, Faculté des Sciences de Tunis, TUNISIA
JOURNAL:
Journal of Mathematics and Applications
10/41
KEY WORDS AND PHRASES:
Analytic; Convex and plurisubharmonic functions; Harmonic function; Inequalities; Holomorphic differential equation; Strictly; Polynomials
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/73
DOI:
10.7862/rf.2018.10
URL:
http://dx.doi.org/10.7862/rf.2018.10
RECEIVED:
2017-09-29
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow