Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
06/40, DOI: 10.7862/rf.2017.6

Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator

Ahmed M.A. El-Sayed, Wagdy G. El-Sayed, A.A.H. Abd El-Mowla

DOI: 10.7862/rf.2017.6

Abstract

The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics([18], [ 21]). In this paper, we study the existence of weak solutions for fractional differential equations of Riemann-Liouville and Caputo types. We depend on converting of mentioned equations to the form of functional integral equations of Voltera-Stieltjes type in reflexive Banach spaces.

Full text (pdf)

References

  1. J. Banaś, Some properties of Urysohn-Stieltjes integral operators, Internat. J. Math. and Math. Sci. 21 (1998) 79-88.
  2. J. Banaś, K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications, Comput. Math. Appl. 41 12 (2001) 1535-1544.
  3. J. Banaś, J.C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput. Math. Appl. 49 (2005) 1565-1573.
  4. J. Banaś, D. O'Regan, Volterra-Stieltjes integral operators, Math. Comput. Modelling. 41 (2005) 335-344.
  5. J. Banaś, T. Zając, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011) 375-387.
  6. M. Benchohra, F. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach spaces, Opuscula Mathematica 32 1 (2012) 31-40.
  7. M. Benchohra, J.R. Graef and F. Mostefai, Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces, Electron. J. Qual. Theory Differ. Equ. 54 (2010) 1-10.
  8. C.W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math. 14 (1970) 434-451.
  9. M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J.R. Astr. Soc. 13 (1967) 529-539.
  10. N. Dunford, J.T. Schwartz, Linear Operators, Interscience, Wiley, New York 1958.
  11. A.M.A. El-Sayed, W.G. El-Sayed and A.A.H. Abd El-Mowla, Volterra-Stieltjes integral equation in reflexive Banach spaces, Electronic Journal of Mathematical Analysis and Applications 5 1 (2017) 287-293.
  12. R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981) 81-86.
  13. E. Hille, R.S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. Providence, R. I. 1957.
  14. H.H.G. Hashem, Weak solutions of differential equations in Banach spaces, Journal of Fractional Calculus and Applications 3 1 (2012) 1-9.
  15. T. Margulies, Wave propagation in viscoelastic horns using a fractional calculus rheology model, The Journal of the Acoustical  Society of America 114 2442 (2003), https://doi.org/10.1121/1.4779280.
  16. B. Mathieu, P. Melchior, A. Oustaloup and Ch. Ceyral, Fractional differentiation for edge detection, Fractional Signal Processing and Applications 83 (2003) 2285-2480.
  17. A.R. Mitchell, Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces (V. Lakshmikantham, ed.) (1978) 387-404.
  18. I. Podlubny, Fractional Differential Equations, Academic Press, New York 1999.
  19. D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (1998) 1-14.
  20. A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971) 197-203.
  21. S.G. Samko, A.A. Kilbas and O. Marichev, Integral and Derivatives of Fractional Orders and Some of Their Applications, Nauka i Teknika, Minsk 1987.
  22. H.A.H. Salem, A.M.A. El-Sayed, Weak solution for fractional order integral equations in reflexive Banach spaces, Math. Slovaca 55 (2005) 169-181.
  23. H.A.H. Salem, A.M.A. El-Sayed, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 2 (2005) 115-130.
  24. H.A.H. Salem, Quadratic integral equations in reflexive Banach space, Discuss. Math. Differ. Incl. Control Optim. 30 (2010) 61-69.

About this Article

TITLE:
Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator

AUTHORS:
Ahmed M.A. El-Sayed (1)
Wagdy G. El-Sayed (2)
A.A.H. Abd El-Mowla (3)

AUTHORS AFFILIATIONS:
(1) Faculty of Science, Alexandria University, Alexandria, Egypt
(2) Faculty of Science, Alexandria University, Alexandria, Egypt
(3) Faculty of Science, Omar Al-Mukhtar University, Derna, Libya

JOURNAL:
Journal of Mathematics and Applications
06/40

KEY WORDS AND PHRASES:
Weak solution; Mild solution; Weakly Riemann-Stieltjes integral; Function of bounded variation

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/55

DOI:
10.7862/rf.2017.6

URL:
http://dx.doi.org/10.7862/rf.2017.6

RECEIVED:
2017-03-01

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności