Journal of Mathematics and Applications
5/35, DOI: 10.7862/rf.2012.5
Close-to-convexity properties of basic hypergeometric functions using their Taylor coefficients
K. Raghavendar, A. Swaminathan
DOI: 10.7862/rf.2012.5
Abstract
In this paper, we find the conditions on parameters a, b, c and q such that the basic hypergeometric function zphi(a, b; c; q, z) and its q-Alexander transform are close-to-convex (and hence univalent) in the unit disc D:={z: |z|<1} .
References
-
W.N. Bailey, Generalized hypergeometric series}, Cambridge University Press, New York, 1935.
-
G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge Univ. Press, Cambridge, 1990.
-
P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
-
B. Friedman, Two theorems on schlicht functions, Duke Math. J. 13 (1946), 171--177.
-
E. Heine, Untersuchungenuber die Reihe ... , J. Reine Ang Math. 34 (1847)
285-328. -
M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990), no. 1-4, 77-84
-
Kustner R., Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order , Comput. Methods Funct. Theory 2 (2002), no. 2, 597-610.
-
T. H. MacGregor, Univalent power series whose coecients have monotonic properties, Math. Z. 112 (1969), 222-228.
-
S. R. Mondal and A. Swaminathan, Coecient conditions for univalency and starlikeness of analytic functions, J. Math. Appl. 31 (2009), 77-90.
-
Saiful R. Mondal and A. Swaminathan, Geometric properties of generalized Polylogarithm, Integral Transforms Spec. Funct. 21 (2010) 691-701.
-
F. Rnning, A Szego quadrature formula arising from q-starlike functions, in Continued fractions and orthogonal functions (Loen, 1992), 345-352, Dekker, New York.
-
S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A 2 (1935), 167-188.
-
A. Swaminathan, Inclusion theorems of convolution operators associated with normalized hypergeometric functions, J. Comput. Appl. Math. 197 (2006), no. 1, 15-28.
-
A. Swaminathan, Univalent polynomials and fractional order di erences of their coecients, J. Math. Anal. Appl. 353 (2009), no. 1, 232-238.
-
A. Swaminathan, Continued fraction expansion for certain hypergeometric functions, Proceedings of the International Conference on Mathematical Sciences,
Center for Mathematical Sciences, Pala, Kerala, 1-22. -
A. Swaminathan, Pick functions and Chain Sequences for hypergeometric type
functions, Communicated for publication. -
N. M. Temme, Special functions, Wiley, New York, 1996.
About this Article
TITLE:
Close-to-convexity properties of basic hypergeometric functions using their Taylor coefficients
AUTHORS:
K. Raghavendar (1)
A. Swaminathan (2)
AUTHORS AFFILIATIONS:
(1) Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttarkhand, India
(2) Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttarkhand, India
JOURNAL:
Journal of Mathematics and Applications
5/35
KEY WORDS AND PHRASES:
Basic hypergeometric functions, Gaussian hypergeometric functions, close-to-convex functions, starlike functions, convex functions
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/5
DOI:
10.7862/rf.2012.5
URL:
http://dx.doi.org/10.7862/rf.2012.5
RECEIVED:
2011-10-11
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow