Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
7/39, DOI: 10.7862/rf.2016.7

On some Lr-biharmonic Euclidean Hypersurfaces

A. Mohammadpouri, F. Pashaie

DOI: 10.7862/rf.2016.7

Abstract

References

[1] G.B. Airy, On the strains in the interior of beams, Philos. Trans. R. Soc. London Ser. A 153 (1863) 49-79.

[2] K. Akutagawa, S. Maeta, Biharmonic properly immersed submanifolds in euclidean spaces, Geom. Dedicata 164 (2013) 351-355.

[3] H. Alencar, M. Batista, Hypersurfaces with null higher order mean curvature, Bull Braz Math Soc., New Series 41(4) (2010) 481-493.

[4] L. J. Alías, N. Gürbüz, An Extension of takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006) 113-127.

[5] M. Aminian, S. M. B. Kashani, Lk-biharmonic hypersurfaces in euclidean space, Taiwan J. Math., DOI: 10.11650/tjm.18.2014.4830, (2014) 113-127.

[6] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 2. World Scientific Publishing Co, Singapore, 2014.

[7] I. Dimitrić, Quadric Representation and Submanifolds of Finite Type, Doctoral Thesis, Michigan State University, 1989.

[8] I. Dimitrić, Submanifolds of En with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin. 20 (1992) 53-65.

[9] J. Eells, J. C. Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976) 263-266.

[10] T. Hasanis, T. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995) 145-169.

[11] S. M. B. Kashani, On some L1-finite type (hyper)surfaces in Rn+1, Bull. Korean Math. Soc. 46, 1 (2009) 35-43.

[12] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley- Interscience, New York, (1963) Vol. II, (1969).

[13] J. C. Maxwell, On reciprocal diagrams in space, and their relation to Airy's function of stress, Proc. London. Math. Soc. 2 (1868) 102.

[14] S. Nishikawa, Y. Maeda, Conformally at hypersurfaces in a conformally at Riemannian manifold, Tohoku Math. J. 26 (1974) 159-168.

[15] T. Otsuki, Minimal Hypersurfaces in a Riemannian Manifold of Constant Curvature, Amer. J. Math. 92, 1 (1970) 145-173.

[16] H. Reckziegel, On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature. Math. Ann. 243 (1979) 71-82.

[17] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geom. 8, 3 (1973) 465-477.

[18] B. Segre, Famiglie di ipersuper_cie isoparametrische negli spazi euclidei ad un qualunque numero di dimensioni, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur 27 (1938) 203-207.

[19] G. Wei, Complete hypersurfaces in a Eculidean space Rn+1 with constant mth mean curvature, Diff. Geom. Appl. 26 (2008) 298-306.

[20] B. G. Yang, X. M. Liu, r-minimal hypersurfaces in space forms, Journal of Geometry and Physics 59 (2009) 685-692.

About this Article

TITLE:
On some Lr-biharmonic Euclidean Hypersurfaces

AUTHORS:
A. Mohammadpouri (1)
F. Pashaie (2)

AUTHORS AFFILIATIONS:
(1) Faculty of Mathematical Sciences, University of Tabriz, Iran.
Department of  Mathematics, Faculty of Basic Sciences, University of Maragheh, Iran.
(2) Faculty of Mathematical Sciences, University of Tabriz, Iran.
Department ofMathematics, Faculty of BasicSciences, University of Maragheh, Iran.
 

JOURNAL:
Journal of Mathematics and Applications
7/39

KEY WORDS AND PHRASES:
Linearized operator, Lr, Lr- biharmonic hypersurfaces, Lr-finite type hypersurfaces, r-minimal.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/49

DOI:
10.7862/rf.2016.7

URL:
http://dx.doi.org/10.7862/rf.2016.7

RECEIVED:
2014-11-15

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: