On Some L_r -Biharmonic Euclidean Hypersurfaces

Akram Mohammadpouri and Firooz Pashaie

ABSTRACT: In decade eighty, Bang-Yen Chen introduced the concept of biharmonic hypersurface in the Euclidean space. An isometrically immersed hypersurface $x: M^n \to \mathbb{E}^{n+1}$ is said to be biharmonic if $\Delta^2 x = 0$, where Δ is the Laplace operator. We study the L_r -biharmonic hypersurfaces as a generalization of biharmonic ones, where L_r is the linearized operator of the (r + 1)th mean curvature of the hypersurface and in special case we have $L_0 = \Delta$. We prove that L_r -biharmonic hypersurface of L_r -finite type and also L_r -biharmonic hypersurface with at most two distinct principal curvatures in Euclidean spaces are *r*-minimal.