Journal of Mathematics and Applications
4/35, DOI: 10.7862/rf.2012.4
Controllability of the semilinear Benjamin-Bona-Mahony equation
H. Leiva, N. Merentes, J.L. Sanchez
DOI: 10.7862/rf.2012.4
Abstract
In this paper we prove the interior approximate controllability of the following Generalized Semilinear Benjamin-Bona-Mahony type equation (BBM) with homogeneous Dirichlet boundary conditions [formulas] where a ≥ 0 and b > 0 are constants, Ω is a domain in R^N, ω is an open nonempty subset of Ω, $1_ω denotes the characteristic function of the set ω, the distributed control u belongs to L^2(0,τ; L^2(Ω)) and the nonlinear function f: [0,τ] × R × R → R is smooth enough and there are c,d,e ∈ R, with c ≠ -1, ea+b > 0, such that [formula], where Q_τ = [0,τ] × R × R. We prove that for all τ > 0 and any nonempty open subset ω of Ω the system is approximately controllable on [0,τ]. Moreover, we exhibit a sequence of controls steering the system from an initial state z_0 to an ε-neighborhood of the final state z_1 on time τ > 0. As a consequence of this result we obtain the interior approximate controllability of the semilinear heat equation by putting a = 0 and b = 1.
References
- J. Appel, H.Leiva, N. Merentes, A. Vignoli, Un espectro de compresion no lineal con
aplicaciones a la controlabilidad aproximada de sistemas semilineales, preprint - S. Axler, P. Bourdon and W. Ramey, Harmonic Fucntion Theory. Graduate Texts in Math., 137. Springer Verlag, New York (1992).
- D. Barcenas, H. Leiva AND Z. Sivoli, A Broad Class of Evolution Equations are Approximately Controllable, but Never Exactly Controllable. IMA J. Math. Control Inform. 22, no. 3 (2005), 310-320.
- R.F. Curtain, A.J. Pritchard, In nite Dimensional Linear Systems. Lecture Notes in Control and Information Sciences, 8. Springer Verlag, Berlin (1978).
- R.F. Curtain, H.J. Zwart, An Introduction to In nite Dimensional Linear Systems Theory. Text in Applied Mathematics, 21. Springer Verlag, New York (1995).
- J.I. DIAZ, J.Henry and A.M. Ramos, On the Approximate Controllability of Some Semilinear Parabolic Boundary-Value Problemas, Appl. Math. Optim 37-71 (1998).
- E. Fernandez-Cara, Remark on Approximate and Null Controllability of Semilinear
Parabolic Equations ESAIM:Proceeding OF CONTROLE ET EQUATIONS AUX DE-
RIVEES PARTIELLES, Vol.4, 1998, 73-81. - E. Fernandez-Cara and E. Zuazua, Controllability for Blowing up Semilinear Parabolic
Equations, C.R. Acad. Sci. Paris, t. 330, serie I, p. 199-204, 2000. - Luiz A. F. de Oliveira, On Reaction-Di usion Systems E. Journal of Di erential Equations, Vol. 1998(1998), N0. 24, pp. 1-10.
- H. Leiva, A Lemma on C0-Semigroups and Applications PDEs Systems, Quaestions
Mathematicae, Vol. 26, pp. 247-265 (2003). - H. Leiva, N. Merentes and J.L. Sanchez, Interior Controllability of the Benjamin-Bona-
Mahony Equation, Journal of Mathematis and Applications, No 33,pp. 51-59 (2010). - H. H. Leiva, N. Merentes and J.L. Sanchez, Interior Controllability of the nD Semilinear
Heat Equation, African Diaspora of Mathematics. Spetial Volume in Honor to Profs. C.
Carduneanu, A. Fink, and S. Zaideman. Vol. 12, Number 2, pp. 1-12(2011). - H. Leiva, Controllability of a System of Parabolic equation with non-diagonal di usion matrix. IMA Journal of Mathematical Control and Information; Vol. 32, 2005, pp. 187-199.
- H. Leiva and Y. Quintana, Interior Controllability of a Broad Class of Reaction Di u-
sion Equations, Mathematical Problems in Engineering, Vol. 2009, Article ID 708516,
8 pages, doi:10.1155/2009/708516. - Xu Zhang, A Remark on Null Exact Controllability of the Heat Equation. IAM J. CON
TROL OPTIM. Vol. 40, No. 1(2001), pp. 39-53. - E. Zuazua, Controllability of a System of Linear Thermoelasticity, J. Math. Pures Appl.,
74, (1995), 291-315. - E. Zuazua, Control of Partial Di erential Equations and its Semi-Discrete Approximation. Discrete and Continuous Dynamical Systems, vol. 8, No. 2. April (2002), 469-513.
About this Article
TITLE:
Controllability of the semilinear Benjamin-Bona-Mahony equation
AUTHORS:
H. Leiva (1)
N. Merentes (2)
J.L. Sanchez (3)
AUTHORS AFFILIATIONS:
(1) Departamento de Matematicas, Universidad de Los Andes, Merida 5101- Venezuela
(2)
(3) Departamento de Matematicas, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1051 Venezuela
JOURNAL:
Journal of Mathematics and Applications
4/35
KEY WORDS AND PHRASES:
interior controllability, semilinear BBM equation, strongly continuous semigroups
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/4
DOI:
10.7862/rf.2012.4
URL:
http://dx.doi.org/10.7862/rf.2012.4
RECEIVED:
2011-10-10
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow