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Abstract: In this paper we prove the interior approximate control-
lability of the following Generalized Semilinear Benjamin-Bona-Mahony
type equation (BBM) with homogeneous Dirichlet boundary conditions{

zt − a∆zt − b∆z = 1ωu(t, x) + f(t, z, u(t, x)), t ∈ (0, τ ], x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

where a ≥ 0 and b > 0 are constants, Ω is a domain in IRN , ω is an open
nonempty subset of Ω, 1ω denotes the characteristic function of the set
ω, the distributed control u belongs to L2(0, τ ;L2(Ω)) and the nonlinear
function f : [0, τ ]×IR×IR→ IR is smooth enough and there are c, d, e ∈ IR,
with c 6= −1, ea+ b > 0, such that

sup
(t,z,u)∈Qτ

|f(t, z, u)− ez − cu− d| <∞,

where Qτ = [0, τ ]×IR×IR. We prove that for all τ > 0 and any nonempty
open subset ω of Ω the system is approximately controllable on [0, τ ].
Moreover, we exhibit a sequence of controls steering the system from an
initial state z0 to an ε-neighborhood of the final state z1 on time τ >
0. As a consequence of this result we obtain the interior approximate
controllability of the semilinear heat equation by putting a = 0 and b = 1.
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1 Introduction.

As we pointed out in [11], the original Benjamin-Bona-Mohany Equation is a nonlinear
one; even so, in this reference we proved the interior controllability of the linear BBM
equation, which is essential for a subsequent study of the nonlinear BBM equation.
So, in this paper we shall prove the interior controllability of the following Gener-
alized Semilinear Benjamin-Bona-Mahony type equation (BBM) with homogeneous
Dirichlet boundary conditions{

zt − a∆zt − b∆z = 1ωu(t, x) + f(t, z, u(t, x)), t ∈ (0, τ ], x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.1)

where a ≥ 0 and b > 0 are constants, Ω is a domain in IRN , ω is an open nonempty
subset of Ω, 1ω denotes the characteristic function of the set ω, the distributed control
u ∈ L2(0, τ ;L2(Ω)) and the nonlinear function f : [0, τ ] × IR × IR → IR is smooth
enough and there are c, d, e ∈ IR, with c 6= −1, ea+ b > 0, such that

sup
(t,z,u)∈Qτ

|f(t, z, u)− ez − cu− d| <∞, (1.2)

where Qτ = [0, τ ]× IR× IR. Under these conditions we prove the following statement:
For all τ > 0 and any nonempty open subset ω of Ω the system is approximately
controllable on [0, τ ]. Moreover, we exhibit a sequence of controls steering the system
from an initial state z0 to an ε-neighborhood of the final state z1 on time τ > 0. As
a consequence of this result we obtain the interior approximate controllability of the
semilinear heat equation by putting a = 0 and b = 1.

We note that, the interior approximate controllability of the linear heat equation zt(t, x) = ∆z(t, x) + 1ωu(t, x) in (0, τ ]× Ω,
z = 0, on (0, τ ]× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,

(1.3)

has been study by several authors, particularly by [15],[16],[17]; and in a general
fashion in [14].

The approximate controllability of the heat equation under nonlinear perturbation
f(z) independents of t and u variables zt(t, x) = ∆z(t, x) + 1ωu(t, x) + f(z) in (0, τ ]× Ω,

z = 0, on (0, τ ]× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,

(1.4)

has been studied by several authors, particularly in [6], [7] and [8], depending on con-
ditions impose to the nonlinear term f(z). For instance, in [7] and [8] the approximate
controllability of the system (1.4) is proved if f(z) is sublinear at infinity, i.e.,

|f(z)| ≤ E|z|+D. (1.5)

Also, in the above references, the authors mentioned that when f is superlinear at
the infinity, the approximate controllability of the system (1.4) fails.
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In this paper we use different technique for the linear part (see [14], [11]) and
Schauder fixed point Theorem for the semilinear system.

Now, we shall describe the strategy of this work:

First, we observe that the hypothesis (1.2) is equivalent to the existence of e, c ∈ IR,
with c 6= −1, ea+ b > 0, such that

sup
(t,z,u)∈Qτ

|f(t, z, u)− ez − cu| <∞, (1.6)

where Qτ = [0, τ ]× IR× IR.
Second, we prove that the auxiliary linear system

{
zt − a∆zt − b∆z = 1ωu(t, x) + ez + cu(t, x), t ∈ (0, τ ], x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.7)

is approximately controllable.
After that, we write the system(1.1) as follows{
zt − a∆zt − b∆z = 1ωu(t, x) + ez + cu(t, x) + g(t, z, u(t, x)), t ∈ (0, τ ], x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.8)
where g(t, z, u) = f(t, z, u)− ez − cu is an smooth and bounded function.

The technique we use here to prove the controllability of the linear equation (1.7)
is based in the following results:

Theorem 1.1. (see Theorem 1.23 from [2], p. 20) Suppose Ω ⊂ IRn is open,
nonempty and connected set, and f is real analytic function in Ω with f = 0 on
a non-empty open subset ω of Ω. Then, f = 0 in Ω.

Lemma 1.1. (see Lemma 3.14 from [4], p. 62)Let {αj}j≥1 and
{βi,j : i = 1, 2, . . . ,m}j≥1 be sequences of real numbers such that: α1 > α2 > α3 · · · .
Then

∞∑
j=1

eαjtβi,j = 0, ∀t ∈ [0, t1], i = 1, 2, · · · ,m

if and only if
βi,j = 0, i = 1, 2, · · · ,m; j = 1, 2, · · · ,∞.

Finally, the approximate controllability of the system (1.8) follows from the con-
trollability of (1.7) and Schauder fixed point Theorem.

2 Abstract Formulation of the Problem.

In this section we describe the space in which this problem will be situated as an
abstract ordinary differential equation.
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Let Z = L2(Ω) = L2(Ω, IR) and consider the linear unbounded operator A :
D(A) ⊂ Z → Z defined by Aφ = −∆φ, where

D(A) = H2(Ω, IR) ∩H1
0 (Ω, IR).

The operator A has the following very well known properties: the spectrum of A
consists of eigenvalues

0 < λ1 < λ2 < · · · < λj < · · · with λj →∞, (2.1)

each one with finite multiplicity γj equal to the dimension of the corresponding
eigenspace. Therefore:
a) There exists a complete orthonormal set {φj,k} of eigenvectors of A.
b) For all z ∈ D(A) we have

Az =

∞∑
j=1

λj

γj∑
k=1

< z, φj,k > φj,k =

∞∑
j=1

λjEjz, (2.2)

where < ·, · > is the inner product in Z and

Ejz =

γj∑
k=1

< z, φj,k > φj,k. (2.3)

So, {Ej} is a family of complete orthogonal projections in Z and

z =

∞∑
j=1

Ejz, z ∈ Z. (2.4)

c) −A generates the analytic semigroup
{
e−At

}
given by

e−Atz =

∞∑
j=1

e−λjtEjz. (2.5)

Consequently, systems (1.1), (1.7) and (1.8) can be written respectively as abstract
differential equations in Z:

z′ + aAz′ + bAz = 1ωu(t) + fe(t, z, u), z ∈ Z t ∈ (0, τ ], (2.6)

z′ + aAz′ + bAz = 1ωu(t) + ez + cu, z ∈ Z t ∈ (0, τ ], (2.7)

z′ + aAz′ + bAz = 1ωu(t) + ez + cu+ ge(t, z, u), z ∈ Z t ∈ (0, τ ], (2.8)

where u ∈ L2([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear
operator, fe : [0, τ ]×Z×U → Z is defined by fe(t, z, u)(x) = f(t, z(x), u(x)), ∀x ∈ Ω
and ge(t, z, u) = fe(t, z, u)− ez− cu. On the other hand, the hypothesis (1.2) implies
that

sup
(t,z,u)∈Zτ

‖fe(t, z, u)− ez − cu‖Z <∞, (2.9)
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where Zτ = [0, τ ]×Z×U . Therefore, ge : [0, τ ]×Z×U → Z is bounded and smooth
enough.

Since (I + aA) = a(A − (− 1
a )I) and − 1

a ∈ ρ(A)(ρ(A) is the resolvent set of A),
then the operator:

I + aA : D(A)→ Z

is invertible with bounded inverse

(I + aA)−1 : Z → D(A).

Therefore, equations (2.6),(2.7) and (2.8) also can be written as follows

z′ + b(I + aA)−1Az = (I + aA)−11ωu(t) (2.10)

+(I + aA)−1fe(t, z, u), z ∈ Z, t ∈ (0, τ ].

z′ + b(I + aA)−1Az = (I + aA)−11ωu(t) + e(I + aA)−1z (2.11)

+c(I + aA)−1u, z ∈ Z, t ∈ (0, τ ].

z′ + b(I + aA)−1Az = (I + aA)−11ωu(t) + e(I + aA)−1z (2.12)

+c(I + aA)−1u+ (I + aA)−1ge(t, z, u), z ∈ Z, t ∈ (0, τ ].

Moreover, (I + aA) and (I + aA)−1 can be written in terms of the eigenvalues of A:

(I + aA)z =

∞∑
j=1

(1 + aλj)Ejz

(I + aA)−1z =

∞∑
j=1

1

1 + aλj
Ejz. (2.13)

Therefore, if we put B = (I + aA)−1 and F (t, z, u) = (I + aA)−1fe(t, z, u), equations
(2.10),(2.11) and (2.12) can be written in the form:

z′ + bBAz = BBωu(t) + F (t, z, u), t ∈ (0, τ ], (2.14)

z′ + bBAz = BBωu(t) + eBz + cBu, t ∈ (0, τ ], (2.15)

z′ + bBAz = BBωu(t) + eBz + cBu+G(t, z, u), t ∈ (0, τ ], (2.16)

where Bωf = 1ωf is a linear a bounded operator from Z to Z and u ∈ L2(0, τ ;L2(Ω))
= L2(0, τ ;Z) and G(t, z, u) = F (t, z, u)− eBz− cBu is smooth enough and bounded.

Now, we formulate two simple propositions.

Proposition 2.1. ([11]) The operators bBA and T (t) = e−bBAt are given by the
following expressions

bBAz =

∞∑
j=1

bλj
1 + aλj

Ejz (2.17)
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Tb(t)z = e−bBAtz =

∞∑
j=1

e
−bλj
1+aλj

t
Ejz. (2.18)

Moreover, the following estimate holds

‖ T (t) ‖≤ e−βt, t ≥ 0, (2.19)

where

β = inf
j≥1

{
bλj

1 + aλj

}
=

bλ1
1 + aλ1

. (2.20)

Observe that, due to the above notation, the system (2.14) can be written as
follows

z′ = −Az +BBωu(t) + F (t, z, u), t ∈ (0, τ ], (2.21)

where A = bBA.

Proposition 2.2. The operators eB − A and Te(t) = e(eB−A)t are given by the
following expressions

(eB −A)z =

∞∑
j=1

e− bλj
1 + aλj

Ejz (2.22)

Te(t)z = e(eB−A)tz =

∞∑
j=1

e
e−bλj
1+aλj

t
Ejz, (2.23)

and
‖ Te(t) ‖≤ eρt, t ≥ 0, (2.24)

where

ρ =
e− bλ1
1 + aλ1

(2.25)

provided that b+ ea > 0.

Notice that systems (2.15) and (2.16) can be written in the form:

z′ = (eB −A)z +BBωu(t) + cBu, t ∈ (0, τ ], (2.26)

z′ = (eB −A)z +BBωu(t) + cBu+G(t, z, u), t ∈ (0, τ ]. (2.27)

3 Controllability of the Auxiliary Linear Equation
(1.7)

In this section we prove the interior controllability of the linear system (2.26). But,
at the beginning we give the definition of approximate controllability for this system.
To this end, notice that for an arbitrary z0 ∈ Z and u ∈ L2(0, τ ;U) the initial value
problem {

z′ = (eB −A)z +BBωu(t) + cBu, t ∈ (0, τ ],
z(0) = z0,

(3.1)
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where the control function u belong to L2(0, τ ;U), admits only one mild solution
given by

z(t) = Te(t)z0 +

∫ t

0

Te(t− s)(BBω + cBI)u(s)ds, t ∈ [0, τ ]. (3.2)

Definition 3.1. (Approximate Controllability) The system (2.26) is said to be
approximately controllable on [0, τ ] if for every z0, z1 ∈ Z, ε > 0 there exists u ∈
L2(0, τ ;U) such that the solution z(t) of (3.2) corresponding to u verifies:

‖z(τ)− z1‖ < ε.

Definition 3.2. For the system (2.26) we define the following concept: The control-
lability map (for τ > 0) Ge : L2(0, τ ;U) −→ Z is given by

Geu =

∫ τ

0

Te(s)(BBω + cBI)u(s)ds, (3.3)

whose adjoint operator G∗e : Z −→ L2(0, τ ;Z) is given by

(G∗ez)(s) = (B∗ω + cI)B∗T ∗e (s)z, ∀s ∈ [0, τ ], ∀z ∈ Z. (3.4)

The following lemma holds in general for a linear bounded operator G : W → Z
between Hilbert spaces W and Z.

Lemma 3.1. (see [4], [5], [1] and [14]) The equation (2.26) is approximately con-
trollable on [0, τ ] if and only if one of the following statements holds:

a) Rang(Ge) = Z.

b) Ker(G∗e) = {0}.

c) 〈GeG
∗
ez, z〉 > 0, z 6= 0 in Z.

d) limα→0+ α(αI +GeG
∗
e)−1z = 0.

e) supα>0 ‖α(αI +GeG
∗
e)−1‖ ≤ 1.

f) (B∗ω + eI)B∗T ∗e (t)z = 0, ∀t ∈ [0, τ ], ⇒ z = 0.

g) For all z ∈ Z we have Geuα = z − α(αI +GeG
∗
e)−1z, where

uα = G∗e(αI +GeG
∗
e)−1z, α ∈ (0, 1].

So, limα→0Geuα = z and the error Eαz of this approximation is given by

Eαz = α(αI +GeG
∗
e)−1z, α ∈ (0, 1].
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Remark 3.1. The Lemma 3.1 implies that the family of linear operators Γα : Z →
L2(0, τ ;U), defined for 0 < α ≤ 1 by

Γαz = (B∗ω + eI)B∗T ∗e (·)(αI +GeG
∗
e)−1z = G∗e(αI +GaG

∗
e)−1z, (3.5)

is an approximate inverse for the right of the operator Ga in the sense that

lim
α→0

GeΓα = I. (3.6)

Theorem 3.1. The system (2.7) is approximately controllable on [0, τ ]. Moreover, a
sequence of controls steering the system (2.7) from initial state z0 to an ε neighborhood
of the final state z1 at time τ > 0 is given by the formula

uα(t) = (B∗ω + eI)B∗T ∗e (t)(αI +GeG
∗
e)−1(z1 − Te(τ)z0),

and the error of this approximation Eα is given by the expresion

Eα = α(αI +GeG
∗
e)−1(z1 − T (τ)z0).

Proof . It is enough to show that the restriction Ge,ω = Ge|L2(0,τ ;L2(ω)) of Ge to

the space L2(0, τ ;L2(ω)) has range dense, i.e., Rang(Ge,ω) = Z or Ker(G∗e,ω) = {0}.
Consequently, Ga,ω : L2(0, τ ;L2(ω))→ Z takes the following form

Ge,ωu =

∫ τ

0

Te(s)B(1 + c)u(s)ds.

whose adjoint operator G∗e,ω : Z −→ L2(0, τ ;L2(ω)) is given by

(Ge,ωz)(s) = (1 + c)B∗T ∗e (s)z, ∀s ∈ [0, τ ], ∀z ∈ Z.

Since B is given by the formula

Bz =

∞∑
j=1

1

1 + aλj
Ejz,

and Te by (2.23), we get that B = B∗ and T ∗e (t) = Te.
Suppose that

(1 + c)B∗T ∗e (t)z = 0, ∀t ∈ [0, τ ].

Since 1 + c 6= 0, this is equivalents to the equality

B∗T ∗e (t)z = 0, ∀t ∈ [0, τ ].

On the other hand, we have

B∗T ∗e (t)z =

∞∑
j=1

e−γjt

1 + aλj
Ejz = 0,
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where γj =
bλj−e
1+aλj

, which satisfies the conditions:

0 < γ1 < γ2 < · · · < γj < · · · . (3.7)

Hence, following the proof of Lemma 1.1, we obtain that

Ejz(x) =

γj∑
k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . .

Since φj,k are analytic functions on Ω, from Theorem 1.1 we obtain that

Ejz(x) =

γj∑
k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ Ω, j = 1, 2, 3, . . . .

Therefore, Ejz = 0, j = 1, 2, 3, . . . , which implies that z = 0. So, Rang(Ge,ω) =

Z, and consequently Rang(Ge) = Z. Hence, the system (2.26) is approximately
controllable on [0, τ ], and the remainder of the proof follows from Lemma 3.1.

4 Controllability of the Semilinear BBM Equation

In this section we prove the main result of this paper, the interior controllability
of the semilinear BBM Equation given by (1.1), which is equivalent to prove the
approximate controllability of the system (2.27). To this end, observe that for all
z0 ∈ Z and u ∈ L2(0, τ ;U) the initial value problem{

z′ = (eB −A)z +BBωu(t) + cBu+G(t, z, u), t ∈ (0, τ ],
z(0) = z0

(4.1)

where the control function u belongs to L2(0, τ ;U), admits only one mild solution
given by the formula

zu(t) = Te(t)z0 +

∫ t

0

Te(t− s)(BBω + cBI)u(s)ds (4.2)

+

∫ t

0

Te(t− s)G(s, zu(s), (s))ds, t ∈ [0, τ ].

Definition 4.1. (Approximate Controllability) The system (2.27) is said to be
approximately controllable on [0, τ ] if for every z0, z1 ∈ Z, ε > 0 there exists u ∈
L2(0, τ ;U) such that the solution z(t) of (4.2) corresponding to u verifies

‖z(τ)− z1‖ < ε.



48 H. Leiva, N. Merentes, J.L. Sanchez

Definition 4.2. For the system (2.27) we define the following concept: The nonlinear
controllability map (for τ > 0) Gg : L2(0, τ ;U) −→ Z is given by the formula

Ggu =

∫ τ

0

Te(s)(BBω + cBI)u(s)ds+

∫ τ

0

Te(s)G(s, zu(s), u(s))ds = Ge(u) +H(u),

(4.3)
where H : L2(0, τ ;U) −→ Z is the nonlinear operator given by

H(u) =

∫ τ

0

Te(s)G(s, zu(s), u(s))ds, u ∈ L2(0, τ ;U) (4.4)

The following lemma is trivial.

Lemma 4.1. The equation (2.27) is approximately controllable on [0, τ ] if and only
if Rang(Gg) = Z.

Definition 4.3. The following equation

uα = Γα(z −H(uα)) = G∗e(αI +GeG
∗
e)
−1(z −H(uα)), (0 < α ≤ 1), (4.5)

will be called the controllability equations associated to the non linear equation (2.27).

Now, we are ready to present and prove the main result of this paper, which is
the interior approximate controllability of the semilinear BBM equation (1.1), and for
the proof we will use some ideas from Propositions 4.2 from [1].

Theorem 4.1. If the operator H define by (4.4) is compact and Rang(H) is com-
pact set, then the system (2.27) is approximately controllable on [0, τ ]. Moreover, a
sequence of controls steering the system (2.27) from initial state z0 to an ε neighbor-
hood of the final state z1 at time τ > 0 is given by the formula

uα(t) = (B∗ω + eI)B∗T ∗e (t)(αI +GeG
∗
e)
−1(z1 − T (τ)z0 −H(uα)),

and the error of this approximation Eα is given by the

Eα = α(αI +GeG
∗
e)
−1(z1 − T (τ)z0 −H(uα)).

Proof For each fixed z ∈ Z we consider the following family of nonlinear operators
Kα : L2(0, τ ;U)→ L2(0, τ ;U), given by the formula

Kα(u) = Γα(z −H(u)) = G∗e(αI +GeG
∗
e)
−1(z −H(u)), (0 < α ≤ 1). (4.6)

First, we prove that, for all α ∈ (0, 1] the operator Kα has a fixed point uα. In fact,
since the operator H is a compact operator, then the operator Kα is compact. On
the other hand, since G(t, z, u) is bounded and ‖Te(t)‖ ≤ ReWt, t ≥ 0, there exists
a constant M > 0 such that

‖H(u)‖ ≤M, ∀u ∈ L2(0, τ ;U).
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Then,
‖Kα(u)‖ ≤ ‖Γα‖(‖z‖+M), ∀u ∈ L2(0, τ ;U).

Therefore, the operator Kα maps the ball Br(0) ⊂ L2(0, τ ;U) of center zero and radio
r ≥ ‖Γα‖(‖z‖ + M) into itself. Hence, applying the Schauder fixed point Theorem
we get that the operator Kα has a fixed point uα ∈ Br(0) ⊂ L2(0, τ ;U).

Since Rang(H) is compact, without loss of generality, we can assume that the
sequence H(uα) converges to y ∈ Z. So,

uα = Γα(z −H(uα)) = G∗e(αI +GeG
∗
e)
−1(z −H(uα)).

Then, we get

Geuα = GeΓα(z −H(uα)) = GeG
∗
e(αI +GeG

∗
e)
−1(z −H(uα))

= (αI +GeG
∗
e − αI)(αI +GeG

∗
e)
−1(z −H(uα))

= z −H(uα)− α(αI +GeG
∗
e)
−1(z −H(uα))

Hence, we deduce the following equality

Geuα +H(uα) = z − α(αI +GeG
∗
e)
−1(z −H(uα)).

To conclude the proof, it enough to prove that

lim
α→0
{−α(αI +GeG

∗
e)
−1(z −H(uα))} = 0

From Lemma 3.1 d) we get that

lim
α→0
{−α(αI +GeG

∗
e)
−1(z −H(uα))} = − lim

α→0
{−α(αI +GeG

∗
e)
−1H(uα)}

= − lim
α→0
−α(αI +GeG

∗
e)
−1y − lim

α→0
−α(αI +GeG

∗
e)
−1(H(uα)− y)

= lim
α→0
−α(αI +GeG

∗
e)
−1(H(uα)− y).

On the other hand, from Lemma 3.1 e, we obtain that

‖α(αI +GG∗)−1(H(uα)− y)‖ ≤ ‖(H(uα)− y)‖.

Therefore, keeping in mind that H(uα) converges to y, we conclude that

lim
α→0
{−α(αI +GG∗)−1(z −H(uα))} = 0

So, putting z = z1 − Te(τ)z0 and using (4.2), we obtain the desired result

z1 = lim
α→0+

{Te(τ)z0 +

∫ τ

0

Te(τ − s)(BBω + cBI)uα(s)ds

+

∫ τ

0

Te(τ − s)G(s, zuα(s), uα(s))ds}

Remark 4.1. In the particular case that a = 0 and b = 1 the operator H define
by (4.4) is compact and Rang(H) is compact set (see [3]) , and as a consequence
we obtain the interior approximate controllability of the semilinear heat equation (see
[12]).
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5 Final Remark

Our technique is simple and can be applied to those system involving diffusion process
like some control system governed by heat equations. For example, the strongly
damped wave equations, beam equations and so on.

Let us provide these two examples where this technique may be used.

Example 5.1. Notice that this technique can be applied to prove the interior control-
lability of the strongly damped wave equation with Dirichlet boundary conditions wtt + η(−∆)1/2wt + γ(−∆)w = 1ωu(t, x) + f(t, z, u(t)), in (0, τ ]× Ω,

w = 0, in (0, τ ]× ∂Ω,
w(0, x) = w0(x), wt(0, x) = w1(x), in Ω,

in the space Z1/2 = D((−∆)1/2)× L2(Ω), where Ω is a bounded domain in IRn, ω is
an open nonempty subset of Ω, 1ω denotes the characteristic function of the set ω,
the distributed control u ∈ L2(0, τ ;L2(Ω)) and η, γ are positive numbers.

Example 5.2. Another example, where this technique may be applied, is the partial
differential equations modeling the structural damped vibrations of a string or a beam
having the form ytt − 2β∆yt + ∆2y = 1ωu(t, x) + f(t, z, u(t)), on (0, τ ]× Ω,

y = ∆y = 0, on (0, τ ]× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), in Ω,

(5.1)

where Ω is a bounded domain in IRn, ω is an open nonempty subset of Ω, 1ω denotes
the characteristic function of the set ω, the distributed control u ∈ L2(0, τ ;L2(Ω)) and
y0, y1 ∈ L2(Ω).
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