Journal of Mathematics and Applications
3/44, DOI: 10.7862/rf.2021.3
Perturbation Theory, M-essential Spectra of 2⨯2 Operator Matrices and Application to Transport Operators
Aref Jeribi, Nedra Moalla, Sonia Yengui
DOI: 10.7862/rf.2021.3
Abstract
In this article we give some results on perturbation theory of 2⨯2 block operator matrices on the product of Banach spaces. Furthermore, we investigate their M-essential spectra. Finally, we apply the obtained results to determine the M-essential spectra of two group transport operators with general boundary conditions in the Banach space Lp([-a, a] ⨯ [-1, 1]) ⨯ Lp([-a, a] ⨯ [-1, 1]), p ≥ 1 and a > 0.
References
- F.V. Atkinson, H. Langer, R. Mennicken, A.A. Shkalikov, The essential spectrum of some matrix operators, Math. Nachr. 167 (1994) 5-20.
- N. Ben Ali, A. Jeribi, N. Moalla, Essential spectra of some matrix operators, Math. Nachr. 283 (9) (2010) 1245-1256.
- A. Ben Amar, A. Jeribi, M. Mnif, Some results on Fredholm and semi-Fredholm perturbations and applications, Arab. J. Math. 3 (2014) 313-323.
- S. Charfi, A. Jeribi, On a characterization of the essential spectra of some matrix operators and application to two-group transport operators. Math. Z. 262 (4) (2009) 775-794.
- S. Charfi, A. Jeribi, I. Walha, Essential spectra, matrix operator and applications, Acta Appl. Math. 111 (2010) 319-337.
- M. Damak, A. Jeribi, On the essential spectra of some matrix operators and application, Elec. J. Diffe. Equa. 11 (2007) 1-16.
- R. Dautray, J.L. Lions, Analyse Mathématique et Calcul Numérique, vol. 9, Masson, Paris, 1988.
- M. Faierman, R. Mennicken, M. Möller, A boundary eigenvalue problem for a system of partial differential operators occuring in magnetohydrodynamics, Math. Nachr. (1995) 141-167.
- I.C. Gohberg, A.S. Markus, I.A. Feldman, Normally solvable operators and ideals associated with them, Amer. Math. Soc. Transl. Ser. 261 (1967) 63-84.
- B. Gramsch, D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971) 17-32.
- W. Greenberg, C. Van Der Mee, V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987.
- K. Gustafson, On algebraic multiplicity, Indiana Univ. Math. J. 25 (1976) 769-781.
- K. Gustafson, J. Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25 (1969) 121-127.
- A. Jeribi, N. Moalla, I. Walha, Spectra of some block operator matrices and application to transport operators, J. Math. Anal. Appl. 351 (1) (2009) 315-325.
- A. Jeribi, N. Moalla, S. Yengui, S-essential spectra and application to an example of transport operators, MMA 37 (2012) 2341-2353.
- N. Moalla, M. Dammak, A. Jeribi, Essential spectra of some matrix operators and application to two-group transport operators with general boundary conditions, J. Math. Anal. Appl. 323 (2006) 1071-1090.
- V. Müller, Spectral theory of linear operator and spectral system in Banach algebras, Operator Theory: Advance and Application 139 (2003).
- R. Nagel, Well-posedness and positivity for systems of linear evolution equations, Confer. Sem. Univ. Math. Bari. 203 (1985) 1-29.
- R. Nagel, Towards a matrix theory for unbounded operator matrices, Math. Z. 201 (1) (1989) 57-68.
- R. Nagel, The spectrum of unbounded operator matrices with non-diagonal domain, J. Funct. Anal. 89 (2) (1990) 291-302.
- C. Tretter, Spectral issues for block operator matrices, In differential equations and mathematical physics (Birmingham, Al, 1999), vol. 16 of AMS-IP Stud. Adv. Math., pp 407-423. American Mathematical Society, Providence, RI, (2000).
- C. Tretter, Spectral inclusion for unbounded Block operator matrices, J. Funct. Anal. 256 (2009) 3806-3829.
- C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
- M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971.
- M. Schechter, On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl. 13 (1966) 205-215.
- A.A. Shkalikov, On the essential spectrum of matrix operators, Math. Notes 58 (5-6) (1995) 1359-1362.
- L. Weis, Perturbation classes of semi-Fredholm operators, Math. Z. 178 (1981) 429-442.
About this Article
TITLE:
Perturbation Theory, M-essential Spectra of 2⨯2 Operator Matrices and Application to Transport Operators
AUTHORS:
Aref Jeribi (1)
Nedra Moalla (2)
Sonia Yengui (3)
AUTHORS AFFILIATIONS:
(1) Faculté des sciences de Sfax, Département de Mathématiques, TUNISIE
(2) Faculté des sciences de Sfax, Département de Mathématiques, TUNISIE
(3) Faculté des sciences de Sfax, Département de Mathématiques, TUNISIE
JOURNAL:
Journal of Mathematics and Applications
3/44
KEY WORDS AND PHRASES:
Operator matrices; Essential spectra; Fredholm perturbation; Transport equation.
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/101
DOI:
10.7862/rf.2021.3
URL:
http://dx.doi.org/10.7862/rf.2021.3
RECEIVED:
2019-11-28
ACCEPTED:
2020-07-17
COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów