Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
3/44, DOI: 10.7862/rf.2021.3

Perturbation Theory, M-essential Spectra of 2⨯2 Operator Matrices and Application to Transport Operators

Aref Jeribi, Nedra Moalla, Sonia Yengui

DOI: 10.7862/rf.2021.3

Abstract

In this article we give some results on perturbation theory of 2⨯2 block operator matrices on the product of Banach spaces. Furthermore, we investigate their M-essential spectra. Finally, we apply the obtained results to determine the M-essential spectra of two group transport operators with general boundary conditions in the Banach space Lp([-a, a] ⨯ [-1, 1]) ⨯ Lp([-a, a] ⨯ [-1, 1]), p ≥ 1 and a > 0.

Full text (pdf)

References

  1. F.V. Atkinson, H. Langer, R. Mennicken, A.A. Shkalikov, The essential spectrum of some matrix operators, Math. Nachr. 167 (1994) 5-20.
  2. N. Ben Ali, A. Jeribi, N. Moalla, Essential spectra of some matrix operators, Math. Nachr. 283 (9) (2010) 1245-1256.
  3. A. Ben Amar, A. Jeribi, M. Mnif, Some results on Fredholm and semi-Fredholm perturbations and applications, Arab. J. Math. 3 (2014) 313-323.
  4. S. Charfi, A. Jeribi, On a characterization of the essential spectra of some matrix operators and application to two-group transport operators. Math. Z. 262 (4) (2009) 775-794.
  5. S. Charfi, A. Jeribi, I. Walha, Essential spectra, matrix operator and applications, Acta Appl. Math. 111 (2010) 319-337.
  6. M. Damak, A. Jeribi, On the essential spectra of some matrix operators and application, Elec. J. Diffe. Equa. 11 (2007) 1-16.
  7. R. Dautray, J.L. Lions, Analyse Mathématique et Calcul Numérique, vol. 9, Masson, Paris, 1988.
  8. M. Faierman, R. Mennicken, M. Möller, A boundary eigenvalue problem for a system of partial differential operators occuring in magnetohydrodynamics, Math. Nachr. (1995) 141-167.
  9. I.C. Gohberg, A.S. Markus, I.A. Feldman, Normally solvable operators and ideals associated with them, Amer. Math. Soc. Transl. Ser. 261 (1967) 63-84.
  10. B. Gramsch, D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971) 17-32.
  11. W. Greenberg, C. Van Der Mee, V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987.
  12. K. Gustafson, On algebraic multiplicity, Indiana Univ. Math. J. 25 (1976) 769-781.
  13. K. Gustafson, J. Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25 (1969) 121-127.
  14. A. Jeribi, N. Moalla, I. Walha, Spectra of some block operator matrices and application to transport operators, J. Math. Anal. Appl. 351 (1) (2009) 315-325.
  15. A. Jeribi, N. Moalla, S. Yengui, S-essential spectra and application to an example of transport operators, MMA 37 (2012) 2341-2353.
  16. N. Moalla, M. Dammak, A. Jeribi, Essential spectra of some matrix operators and application to two-group transport operators with general boundary conditions, J. Math. Anal. Appl. 323 (2006) 1071-1090.
  17. V. Müller, Spectral theory of linear operator and spectral system in Banach algebras, Operator Theory: Advance and Application 139 (2003).
  18. R. Nagel, Well-posedness and positivity for systems of linear evolution equations, Confer. Sem. Univ. Math. Bari. 203 (1985) 1-29.
  19. R. Nagel, Towards a matrix theory for unbounded operator matrices, Math. Z. 201 (1) (1989) 57-68.
  20. R. Nagel, The spectrum of unbounded operator matrices with non-diagonal domain, J. Funct. Anal. 89 (2) (1990) 291-302.
  21. C. Tretter, Spectral issues for block operator matrices, In differential equations and mathematical physics (Birmingham, Al, 1999), vol. 16 of AMS-IP Stud. Adv. Math., pp 407-423. American Mathematical Society, Providence, RI, (2000).
  22. C. Tretter, Spectral inclusion for unbounded Block operator matrices, J. Funct. Anal. 256 (2009) 3806-3829.
  23. C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
  24. M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971.
  25. M. Schechter, On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl. 13 (1966) 205-215.
  26. A.A. Shkalikov, On the essential spectrum of matrix operators, Math. Notes 58 (5-6) (1995) 1359-1362.
  27. L. Weis, Perturbation classes of semi-Fredholm operators, Math. Z. 178 (1981) 429-442.

About this Article

TITLE:
Perturbation Theory, M-essential Spectra of 2⨯2 Operator Matrices and Application to Transport Operators

AUTHORS:
Aref Jeribi (1)
Nedra Moalla (2)
Sonia Yengui (3)

AUTHORS AFFILIATIONS:
(1) Faculté des sciences de Sfax, Département de Mathématiques, TUNISIE
(2) Faculté des sciences de Sfax, Département de Mathématiques, TUNISIE
(3) Faculté des sciences de Sfax, Département de Mathématiques, TUNISIE

JOURNAL:
Journal of Mathematics and Applications
3/44

KEY WORDS AND PHRASES:
Operator matrices; Essential spectra; Fredholm perturbation; Transport equation.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/101

DOI:
10.7862/rf.2021.3

URL:
http://dx.doi.org/10.7862/rf.2021.3

RECEIVED:
2019-11-28

ACCEPTED:
2020-07-17

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności