Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Modern Management Review (dawna nazwa: Zarządzanie i Marketing)

Modern Management Review
(dawna nazwa: Zarządzanie i Marketing)
20 (3/2013), DOI: 10.7862/rz.2013.mmr.33

PREDICTING BANKRUPTCY OF COMPANIES FROM THE LOGISTICS SECTOR OPERATING IN THE PODKARPACIE REGION

Tomasz PISULA, Grzegorz MENTEL, Jacek BROŻYNA

DOI: 10.7862/rz.2013.mmr.33

Abstract

Research on effectiveness of various concepts for modelling the bankruptcy of companies from the logistics sector is described in this article. In order to present this issue more completely the above-mentioned prediction of possible negative effects for the conducted business activity was conducted for all companies operating in that sector in the Podkarpacie region. The study was supported by the data from the database EMIS (Emerging Markets Information Service ). A wide range of 28 financial indicators was grouped into five groups i.e. liquidity ratios, profitability, debt, performance, and financial respectively. The above mentioned research trial was divided into a group of companies – so-called ill - in relation to which the bankruptcy was declared and healthy ones (of good financial condition).
Such an approach allows for a better and right assessment of the methods in modeling bankruptcy. The purpose of this publication was to find factors (models) describing the risk of bankruptcy of enterprises in terms of their effectiveness prediction in one - and two year- horizon. The logistics regression models, classification trees and two lunatics artificial neural networks were applied. A full evaluation of the models application were made in the validation process. The primary tool used in this case to study the effectiveness of models classification are matrices of correct classification. It was made an estimation of the correct and wrong indications in both the above mentioned models. Finally, an assessment of the method was done as well as the overall condition of the logistics sector in the Podkarpacie region.

Full text (pdf)

References

[1] Altman E. I., Haldeman R. G., Narayanan P. (1977), ZETA ANALYSIS, a new model to identify bankruptcy risk of corporations, “Journal of Banking and Finance 1, pp. 29–54.
[2] Atiya A.F. (2001), Bankruptcy prediction for credit risk using neural networks: A survey and new results, IEEE Transactions on Neural Networks 12 (4), pp. 929–935.
132 T.Pisula, G. Mentel, J. Brożyna
[3] Breiman L., Friedman J.H., Olshen R.A., Stone C.J. (1993); Classification and Regression Trees, Chapman and Hall.
[4] Fletcher D., Goss E. (1993), Application forecasting with neural networks an application using bankruptcy data, Information and Management 24, pp. 159–167.
[5] Frydman H., Altman E.I., Kao D. (1985), Introducing recursive partitioning for financial classification: The case of financial distress, Journal of Finance 40 (1), pp. 269–291.
[6] Jones S., Hensher D.A. (2004), Predicting firm financial distress: A mixed logit model, Accounting Review 79 (4), pp. 1011–1038.
[7] Karels G.V., Prakash A.J. (1987), Multivariate normality and forecasting of business bankruptcy, Journal of Business Finance and Accounting 14 (4) (1987).
[8] Kaski S., Sinkkonen J., Peltonen J. (2001), Bankruptcy analysis with self-organizing maps in learning metrics, IEEE Transactions on Neural Networks 12 (4), pp. 936-947.
[9] Kiviluoto K. (1998), Predicting bankruptcies with self-organizing map, Neurocomputing 21, pp. 191–201.
[10] Kolari J., Glennon D., Shin H., Caputo M. (2002), Predicting large US commercial bank failures, Journal of Economics and Business 54 (32 1), pp. 361–387.
[11] Kumar P. R., Ravi V. (2007), Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review, “European Journal of Operational Research” 180 (2007), pp. 1-28.
[12] Lam M. (2004), Neural networks techniques for financial performance prediction: integrating fundamental and technical analysis, Decision Support Systems 37, pp. 567–581.
[13] Lee K., Booth D., Alam P. (2005), A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms, Expert Systems with Applications 29, pp. 1–16.
[14] Leshno M., Spector Y. (1996), Neural network prediction analysis: The bankruptcy case, Neurocomputing 10, pp. 125–147.
[15] Löffler G., Posch P., N. (2007), Credit risk modeling using Excel and VBA, Wydawnictwo Wiley, Chichester, West Sussex, pp. 156.
[16] Marais M.L., Patel J., Wolfson M. (1984), The experimental design of classification models: An application of recursive partitioning and bootstrapping to commercial bank loan classifications, Journal of Accounting Research 22, pp. 87–113.
[17] Martin D. (1977), Early warning of bank failure: A logit regression approach, “Journal of Banking and Finance”, 1, pp. 249–276.
[18] Matuszyk A. (2004), Credit scoring – metoda zarządzania ryzykiem kredytowym, Wydawnictwo CeDeWu, Warszawa, pp. 119-122.
[19] Ohlson J.A. (1980), Financial rations and the probabilistic prediction of bankruptcy, Journal of Accounting Research 18, pp. 109–131
[20] Prusak B. (2005), Nowoczesne metody prognozowania zagrożenia finansowego przedsiębiorstw, Wydawnictwo Difin, Warszawa, pp. 50.
[21] Serrano-Cinca C. (1996), Self-organizing neural networks for financial diagnosis, Decision Support Systems 17, pp. 227–238.
[22] Tam K.Y., Kiang M. (1992), Predicting bank failures: A neural network approach, Decision Sciences 23, pp. 926–947.
[23] Thomas L. C. (2009), Consumer credit models. Pricing, Profit and Portfolios, Oxford University Press, Oxford, pp. 111.
Predicting bankruptcy of companies… 133
[24] Wilson R.L., Sharda R. (1994), Bankruptcy prediction using neural networks, Decision Support Systems 11, pp. 545–557.
[25] Witkowska D. (2002), Sztuczne sieci neuronowe i metody statystyczne. Wybrane zagadnienia finansowe, C.H. Beck, Warszawa, pp. 86-87.
[26] Yu L., Wang S., Lai K. K., Zhou L. (2008), Bio-Inspired Credit Risk Analysis. Computational Intelligence with Support Vector Machines, Springer-Verlag, Berlin Heidelberg, pp. 14-15.

About this Article

TITLE:
PREDICTING BANKRUPTCY OF COMPANIES FROM THE LOGISTICS SECTOR OPERATING IN THE PODKARPACIE REGION

AUTHORS:
Tomasz PISULA (1)
Grzegorz MENTEL (2)
Jacek BROŻYNA (3)

AUTHORS AFFILIATIONS:
(1) Department of Quantitative Methods, Faculty of Management, The Rzeszow University of Technology
(2) Department of Quantitative Methods, Faculty of Management, The Rzeszow University of Technology
(3) Department of Quantitative Methods, Faculty of Management, The Rzeszow University of Technology

JOURNAL:
Modern Management Review
20 (3/2013)

KEY WORDS AND PHRASES:
bankruptcy, logistic sector, modeling, financial indexes

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/zim/64

DOI:
10.7862/rz.2013.mmr.33

URL:
http://dx.doi.org/10.7862/rz.2013.mmr.33

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: