Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Mechanika

Mechanika
84 (3/12), DOI: 10.7862/rm.2012.6

Numerical modeling of the drawbead simulator test

Tomasz Trzepieciński

DOI: 10.7862/rm.2012.6

Abstract

The work contains the results of experimental researches and numerical simulations of friction test that simulate the friction conditions in drawbead during sheet metal forming. The numerical model of the drawbead friction simulator test has been created using MSC.Marc + Mentat 2010. Simulations have been performed to determine a stress state in pulled sample during the drawbead simulator test. The isotropic and two anisotropic Hill (1948) and Barlat (1991) material models were used in simulations taking into consideration sample orientation according to the rolling direction of the sheet. The samples for friction tests were cut along and transverse to the rolling direction of the sheet. It was found that the yield criterion has a strong influence on the distribution and the value of normal and shear stresses in the sample. Furthermore, the values of analyzed stresses were changed in the sample width.

Full text (pdf)

References

  1. Nine H.D.: Draw bead forces in sheet metal forming. Proc. Symp. Mechanics of Sheet Metal Forming: Behaviour and Deformation Analysis, Warren, Plenum Press, Michigan 1978, 179-211.
  2. Meinders T.: Developments in numerical simulations of the real-life deep drawing process, doctoral thesis, University of Twente-Enschede, 2000.
  3. Taherizadeh A., Ghaei A., Green D.G., Altenhof W.J.: Finite element simulation of springback for a channel draw process with drawbead using different hardening models, Int. J. Mech. Sci., 51 (2009), 314-325.
  4. Gan W., Wagoner R.H.: Die design method for sheet springback, Int. J. Mech. Sci., 46 (2004), 1097-113.
  5. Stachowicz F., Trzepieciński T.: ANN application for determination of frictional characteristics of brass sheet metal, J. Artif. Intell., 1 (2004), 81-90.
  6. Livatyali H., Firat M., Gurler B., Ozsoy M.: An experimental analysis of drawing characteristics of a dual-phase steel through a round drawbead, Materials & Design, 31 (2010), 1639-1643.
  7. Trzepieciński T.: Badania oporów tarcia wywołanych działaniem progów ciągowych w procesie kształtowania blach, Rudy Metale Nieżelazne, 55 (2010), 345-349.
  8. Manjula N.K.B., Nanayakkara P., Hodgson P.D.: Determination of drawbead contacts with variable bead penetration, Comp. Methods Mat. Sci., 6 (2006), 188-194.
  9. Green D.E.: An experimental technique to determine the behavior of sheet metal in a drawbead, SAE Technical Paper Series, 2001- 01-1136.
  10. Nanayakkara N.K.B.M.P., Kelly G.L., Hodgson P.D.: Determination of the coefficient of friction in partially penetrated draw beads, Steel GRIPS, 2, Suppl. Metal Forming, 2004, 667-682.
  11. MSC.Marc Volume B: Element Library Version 2010, MSC.Software Corporation, 2010.
  12. Larsson M.: Computational characterization of drawbeads A basic modeling method for data generation, J. Mat. Proc. Technol., 209 (2009), 376-386.
  13. Trzepieciński T., Gelgele H.L.: Investigation of anisotropy problems in sheet metal forming using finite element method, Int. J. Mat. Form., 4 (2011), 357-359.
  14. Von-Mises R.: Mechanik der festen Körper im plastisch deformablen Zustand, Nachr. Ges. Wiss. Göttingen, 1913,  582.
  15. Hill R.: A theory of the yielding and plastic flow of anisotropic metals, Proc. of the Royal Society of London, A 193 (1948), 281-297.
  16. Yoon J.W., Barlat F., Chung K., Pourboghrat F., Yang D.Y.: Earing predictions based on asymmetric nonquadratic yield function, Int. J. Plasticity, 16 (2000), 1075-1104.
  17. Barlat F., Lege D.J., Brem J.C.: A six-component yield function for anisotropic metals, Int. J. Plasticity, 7 (1991), 693-712.
  18. MSC.Marc Volume A: Theory and user information. Version 2010, MSC.Software Corporation, 2010.

About this Article

TITLE:
Numerical modeling of the drawbead simulator test

AUTHORS:
Tomasz Trzepieciński

AUTHORS AFFILIATIONS:
Rzeszow University of Technology

JOURNAL:
Mechanika
84 (3/12)

KEY WORDS AND PHRASES:
coefficient of friction, drawbead, FEM, friction, numerical modeling, sheet metal forming

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/mechanika/6

DOI:
10.7862/rm.2012.6

URL:
http://dx.doi.org/10.7862/rm.2012.6

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności