Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Mechanika

Mechanika
90(4/18), DOI: 10.7862/rm.2018.38

SELECTED PROPERTIES OF BIOCOMPOSITES ON THE BASIS OF PHBV WITH CELLULOSE FILLERS

Wiesław Frącz, Grzegorz Janowski

DOI: 10.7862/rm.2018.38

Abstract

The paper presents selected properties of the developed biocomposites based on PHBV poly (3-hydroxybutyric co-3-hydroxyvaleric acid) biopolymer. The PHBV biopolymer is obtained by the copolymerization of 3-hydroxybutyric acid and 3-hydroxyvaleric acid. The biopolymer used for the tests contained 8% of poly(3-hydroxyvaleric acid). For the preparation of the composite, three types of fillers: wood flour, hemp fiber and flax fiber were used in search for the best possible mechanical properties of composite. During the selection of filler types, the availability and price in the geographical area of Poland as well as mechanical properties were taken into account. Fillers were alkalized and fiber modification parameters were determined. The following mass percentages of fillers in the tests: 15%, 30%, 45%, 50% and various fiber lengths were used. To produce the biocom-posites the single- and twin screw extruders made by Zamak Company were used. The initial processing parameters were determined using DSC thermogram analyses. The technological parameters depended on the type of filler and its percentage content. The best mechanical properties, compared to generally available polymers like PP, PE, PVC or PS were obtained for the composite with hemp fiber. The developed composite is completely biodegradable. Better mechanical properties of produced composite in relation to e.g. PE or PP allow using it for the production of parts that are used in various branches of the economy.

Full text (pdf)

References

  1. Malinowski R.: Biotworzywa jako nowe materiały przyjazne środowisku naturalnemu, Inżynieria Ochrona Środowiska, 18 (2015) 215-231.
  2. Report: BIOPLASTICS facts and figures 2017. http://docs.european bioplastics.org/publications/EUBP_Facts_and_figures.pdf (access: 30.04.2018 r.).
  3. Serafim L.S., Lemos P.C., Albuquerque M.G., Reis M.A.: Strategies for PHA production by mixed cultures and renewable waste materials, Appl. Microbiology Biotechnology, 81 (2008) 615-628.
  4. Alper R., Lundgren D.G., Marchessault R.H., Cote W.A.: Properties of poly-b-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer, Biopolymers, 1 (1963) 545-556.
  5. Hobbs J.K., McMaster T.J., Miles M.J., Barham P.J.: Direct observations of the growth of spherulites of poly (hydroxybutyrate-co-valerate) using atomic force microscopy, Polymer, 39 (1998) 2437-2446.
  6. Bassett D.C.: Developments in Crystalline Polymers, Elsevier, Londyn 1988.
  7. Barham P.J., Barker P., Organ S.J.: Physical properties of poly (hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate, FEMS Microbiology Reviews, 9 (1992) 289-298.
  8. Zinn M., Hany R.: Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification, Adv. Eng. Mater., 7 (2005) 408-411.
  9. Fei B., Chen C., Wu H., Peng S., Wang X., Dong L., Xin J.H.: Modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using hydrogen bonding monomers, Polymer, 45 (2004) 6275-6284.
  10. Scott G.: Green’polymers. Polymer degradation and stability, 68 (2000), 1-7.
  11. Chiellini E., Solaro R.: Biodegradable polymeric materials, Adv. Mater., 8 (1996) 305-313.
  12. Vogel R., Tändler B., Voigt D., Jehnichen D., Häußler L., Peitzsch L., Brünig H.: Melt spinning of bacterial aliphatic polyester using reactive extrusion for improvement of crystallization, Macromolecular Bioscience, 7 (2007) 820-828.
  13. Arakawa K., Yokohara T., Yamaguchi M.: Enhancement of melt elasticity for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by addition of weak gel, J. Appl. Polymer Sci., 107 (2008) 1320-1324.
  14. Blackburn R.S.: Biodegradable and Sustainable Fibres, 1st edition, Woodhead Publishing Limited Cambridge 2005.
  15. Vogel R., Tändler B., Häussler L., Jehnichen D., Brünig H.: Melt Spinning of Poly(3-hydroxybutyrate) fibers for tissue engineering using a-cyclodextrin/polymer inclusion complexes as the nucleation agent, Macromolecular Bioscience, 6 (2006) 730-736.
  16. Błędzki A.K., Jaszkiewicz A.: Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP, Composites Sci. Technol., 70 (2010) 1687-1696.
  17. Chen G.X., Hao G.J., Guo, T.Y., Song M.D., Zhang B.H.: Structure and mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/clay nanocomposites, J. Mater. Sci. Letters, 21 (2002) 1587-1589.
  18. Mohanty A.K., Khan M.A., Sahoo S., Hinrichsen G.: Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites, J. Mater. Sci., 35 (2000) 2589-2595.
  19. Lee B.H., Kim H.J., Yu W.R.: Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties, Fibers Polymers, 10 (2009) 83-90.
  20. Li X., Tabil L.G., Panigrahi S.: Chemical treatments of natural fiber for use in natural fiber-reinforced composites, J. Polymers Environment, 15 (2007) 25-33.
  21. Mehta G., Mohanty A.K., Thayer K., Misra M., Drzal L.T.: Novel biocomposites sheet molding compounds for low cost housing panel applications, J. Polymers Environment, 13 (2005) 169-175.
  22. Mohanty A.K., Misra M., Drzal L.T.: Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, J. Polymers Environment, 10 (2002) 19-26.
  23. Mohanty A.K., Misra M.A., Hinrichsen G.: Biofibres, biodegradable polymers and biocomposites: an overview, Macromolecular Mater. Eng., 276 (2000) 1-24.
  24. Bos H.L., Van Den Oever M.J.A., Peters O.C.J.J.: Tensile and compressive properties of flax fibres for natural fibre reinforced composites, J. Mater. Sci., 37 (2002) 1683-1692.
  25. Pickering K.L., Beckermann G.W., Alam S.N., Foreman N.J.: Optimizing industrial hemp fibre for composites, Composites Part A: Appl. Sci. Manuf., 38 (2007) 461-468.
  26. Charlet K., Baley C., Morvan C., Jernot J. P., Gomina M., Bréard J.: Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites, Composites Part A: Appl. Sci. Manuf., 38 (2007) 1912-1921.

About this Article

TITLE:
SELECTED PROPERTIES OF BIOCOMPOSITES ON THE BASIS OF PHBV WITH CELLULOSE FILLERS

AUTHORS:
Wiesław Frącz (1)
Grzegorz Janowski (2)

AUTHORS AFFILIATIONS:
(1) Rzeszow University of Technology
(2) Rzeszow University of Technology

JOURNAL:
Mechanika
90(4/18)

KEY WORDS AND PHRASES:
PHBV, natural fibers, composites, biopolymers, injection moulding

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/mechanika/287

DOI:
10.7862/rm.2018.38

URL:
http://dx.doi.org/10.7862/rm.2018.38

RECEIVED:
2018-09-12

ACCEPTED:
2018-10-23

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności