Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Mechanika

Mechanika
90(4/18), DOI: 10.7862/rm.2018.35

DESIGN AND IMPLEMENTING POSSIBILITIES OF COMPOSITE PONTOON BRIDGE

Wojciech Błażejewski, Adrianna Filipiak, Michał Barcikowski, Karolina Łagoda, Paweł Stabla, Marek Lubecki, Michał Stosiak, Cezary Śliwiński, Zbigniew Kamyk

DOI: 10.7862/rm.2018.35

Abstract

This work focuses on the analysis of actions conducted by the Military Institute of Engineer Technology and Wroclaw University of Science and Technology regarding the production and testing (on proving ground) of composite pontoon bridge. The starting point for this work was the experience gained from the project named „Light, resistant to environmental hazards, aluminum-composite hybrid pontoon used in constructing floating bridges of MLC 70/110 class”. Each one of the three V-shaped outriggers was designed using different technology. The middle part was constructed mostly of aluminum by company PREMO, but the smaller outrigger and all parts of the bow were made at Wroclaw University of Science and Technology from composite material reinforced with glass, aramid and carbon fibers. The inside was filled with multiple types of foam. During successful tests on proving grounds, conducted by Military Institute of Engineer Technology, elements were connected with PP-64 pontoons. It was proven that Wroclaw scientific society is capable of designing and manufacturing of a prototype pontoon bridge park.

Full text (pdf)

References

  1. Chwaściński B.: Mosty na Wiśle i ich budowniczowie, Warszawa 1997.
  2. Sterner W.: Mosty Warszawy, PWT, Warszawa 1960.
  3. Kaliszewski K., Rojewski T., Winiarski A.: Ukłony z Włocławka, karty pocztowe 1898-1945, EXPOL, Włocławek 2005.
  4. Watanabe E., Wang C.M., Utsunomiya T., Moan T.: Very Large Floating Structures: Applications, Analysis and Design. Centre for Offshore Research and Engineering National University of Singapore. CORE Report No. 2004-02.
  5. Watanabe E., Utsunomiya T.: Analysis and design of floating bridges, Progress Structural Eng. Mater., 5 (2003) 127-144.
  6. Bank L.C.: Application of FRP composites to bridges in the USA. Int. Colloquium on Application of FRP to Bridges, Japan Society of Civil Engineers, S. Yamada, ed., Tokyo, Japan 2006, pp. 9-16.
  7. Keller T.: Overview of fiber-reinforced polymers in bridge construction, Struct. Eng. Int., 12 (2002) 66-70.
  8. Zobel H., Karwowski W., Sarnowska J., Wróbel M.: Nowa generacja mostów – mosty z kompozytów polimerowych, część I – Autostrady 4/2004, s. 16-19, część II – Autostrady 5/2004, s. 54-63.
  9. Kamyk Z., Szelka J.: Zastosowanie kompozytów w mostach wojskowych, Archiwum Instytutu Inżynierii Lądowej, 5 (2009) 133-142.
  10. Robinson M.J., Kosmatka J.B.: Light-weight fiber-reinforced polymer composite deck panels for extreme applications, J. Composites Constr., 12 (2008) 344-354.
  11. Robinson M.J., Kosmatka J.B.: Development of a short-span fiber-reinforced composite bridge for emergency response and military applications, J. Bridge Eng.,
    7 (2008) 388-397.
  12. Wight R.G., Shyu C.T., Tanovic R., Erki M.A., Heffernan P.J.: Short-span deployable GFRP tapered box beam bridge, Proc., 4th Int. Conf. on Advanced Composite Materials in Bridges and Structures. 2004, pp. 20-23.
  13. Błażejewski W., Gąsior P.P., Kaleta J., Krzyżak A., Rybczyński R.: Wytwarzanie
    i badania sześciokątnych profili kompozytowych do bloków komórkowych, [In:] Materiały polimerowe, T. Spychaj, S. Spychaj (ed.), Szczecin 2010, pp. 117-118.
  14. STANAG 2021, Military Load Classification of Bridges, Ferries, Rafts and Vehicles, NATO NSA, Brussels 2006.
  15. PN-85/S-10030, Obiekty mostowe. Obciążenia.
  16. 1NO-54-A201A1 2007, Parki pontonowe. Wymagania ogólne.

About this Article

TITLE:
DESIGN AND IMPLEMENTING POSSIBILITIES OF COMPOSITE PONTOON BRIDGE

AUTHORS:
Wojciech Błażejewski (1)
Adrianna Filipiak (2)
Michał Barcikowski (3)
Karolina Łagoda (4)
Paweł Stabla (5)
Marek Lubecki (6)
Michał Stosiak (7)
Cezary Śliwiński (8)
Zbigniew Kamyk (9)

AUTHORS AFFILIATIONS:
(1) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(2) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(3) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(4) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(5) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(6) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(7) Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
(8) Military Institute of Engineer Technology, Wroclaw
(9) Military Institute of Engineer Technology, Wroclaw

JOURNAL:
Mechanika
90(4/18)

KEY WORDS AND PHRASES:
pontoon bridge, composite material, prototype

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/mechanika/284

DOI:
10.7862/rm.2018.35

URL:
http://dx.doi.org/10.7862/rm.2018.35

RECEIVED:
2018-04-24

ACCEPTED:
2018-09-28

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności