Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Mechanika

Mechanika
89 (2/17), DOI: 10.7862/rm.2017.14

NUMERICAL MODELING OF BODY FORCE INDUCED BY CORONA DISCHARGE

Rafał GAŁEK

DOI: 10.7862/rm.2017.14

Abstract

The paper presents the theoretical basis and results of numerical modeling of corona discharge phenomenon carried out to determine the value of body force that induces the flow of surrounding fluid. The system of two partial differential equations is solved with the values of electric potential ϕ and space charge density ρq as unknowns. The first equation is of Poisson-type with Laplacian acting on the value of potential and source term dependent on space charge density as well as electric permittivity of the medium. The second equation is current continuity equation, where the current density is composed of charge carrier diffusion term and the term describing their drift in electric field. Particular attention was given to the boundary condition of space charge density due to its indirect nature. Geometry of the problem assumes that positive corona discharge takes place on the sharp edge of the blade-shaped anode while flat grounded plate acts as a cathode. Such configuration enables simplified analysis in 2D Cartesian coordinates assuming that the section plane is sufficiently far from the lateral edges of the blade. The system of equations is solved with MOOSE (Multiphysics Object-Oriented Simulation Environment) Framework released in public domain on GNU LGPL license by Idaho National Laboratory. Presented results include 2D distributions of electric potential, electric field strength, space charge density and body force in air surrounding electrodes.

Full text (pdf)

References

  1. Jewell-Larsen N.E., Ran H., Zhang Y., Schwiebert M.K., Honer K.A., Mamishev A.V.: Electrohydrodynamic (EHD) cooled laptop, 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 261–266, San Jose, March 2009.
  2. Kamboh S.A., Labadin J., Rigit A.R.H.: Computational modeling and simulation of EHD ion-drag pumping using finite difference method, 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, 207–211, Kota Kinabalu, December 2013.
  3. Gallandat N., Rhett Mayor J.: Novel heat sink design utilizing ionic wind for efficient passive thermal management of grid-scale power routers, Journal of Thermal Science and Engineering Applications, 7 (2015) 31004-1–31004-8.
  4. Komeili B., Chang J., Harvel G.D., Ching C.Y., Brocilo D.: Flow characteristics of wire-rod type electrohydrodynamic gas pump under negative corona operations, Journal of Electrostatics, 66 (2008) 342–353.
  5. Zhang J., Lai F.C.: Effect of emitting electrode number on the performance of EHD gas pump in a rectangular channel, Journal of Electrostatics, 69 (2011) 486–493.
  6. Adamiak K., Atten P.: Simulation of corona discharge in point–plane configuration, Journal of Electrostatics, 61 (2004) 85–98.
  7. Adamiak K., Atrazhev V., Atten P.: Corona discharge in the hyperbolic point-plane configuration: Direct ionization criterion versus approximate formulations, IEEE Transactions on Dielectrics and Electrical Insulation, 12 (2005) 1025–1033.
  8. Khaddour B., Atten P., Coulomb J.-L.: Electrical field modified by injected space charge in blade-plate configuration, IEEE Transactions on Magnetics, 42 (2006) 651–654.
  9. Zhao L., Adamiak K.: EHD flow in air produced by electric corona discharge in pin–plate configuration, Journal of Electrostatics, 63 (2005) 337–350.
  10. Jewell-Larsen N.E., Karpov S.V, Krichtafovitch I.A., Jayanty V., Hsu C.-P., Mamishev A.V.: Modeling of corona-induced electrohydrodynamic flow with COMSOL multiphysics, Proc. ESA Annual Meeting on Electrostatics, Paper E1, 1–13, Minneapolis, June 2008.
  11. Jewell-Larsen N.E., Zhang P.Q., Hsu C.-P., Krichtafovitch I.A., Mamishev A.V.: Coupled-physics modeling of electrostatic fluid accelerators for forced convection cooling, 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 1–10, San Francisco, June 2006.
  12. Ahmedou O., Havet M.: Effect of process parameters on the EHD airflow, Journal of Electrostatics, 67 (2009) 222–227.
  13. Quast M., Lalic N.R.: Measuring and calculation of positive corona currents using COMSOL Multiphysics®, Proceedings of the COMSOL Conference, 1–7, Milan 2009.
  14. Zhang J., Zhao C., Li H., Tao W.: 3D numerical simulation of heat transfer of a heated plate under the electric field generated by a needle electrode, Mathematical Problems in Engineering, 2014, 1–10.
  15. Martins A.A.: Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure, Physics of Plasmas, 19 (2012) 1–11.
  16. Jackson J.D.: Classical Electrodynamics, 3rd ed., Wiley, New York 1999.
  17. Castellanos A.: Electrohydrodynamics, Springer-Verlag Wien GmbH, New York 1998.
  18. Tirumala R., Go D.B.: Comparative study of corona discharge simulation techniques for electrode configurations inducing non-uniform electric fields, Journal of Electrostatics, 72 (2014) 99–106.
  19. Gaston D., Newman C., Hansen G., Lebrun-Grandié D.: MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nuclear Engineering and Design, 239 (2009) 1768–1778.
  20. Kirk B.S., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Engineering with Computers, 22 (2006) 237–254.
  21. Bouziane A., Hidaka K., Taplamacioglu M.C., Waters R.T.: Assessment of corona models based on the Deutsch approximation, Journal of Physics D: Applied Physics, 27 (1994) 320–329.

About this Article

TITLE:
NUMERICAL MODELING OF BODY FORCE INDUCED BY CORONA DISCHARGE

AUTHORS:
Rafał GAŁEK

AUTHORS AFFILIATIONS:
Rzeszow University of Technology

JOURNAL:
Mechanika
89 (2/17)

KEY WORDS AND PHRASES:
ion wind, electrostatic fluid accelerator, EHD flow, finite element method, system of differential equations

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/mechanika/209

DOI:
10.7862/rm.2017.14

URL:
http://dx.doi.org/10.7862/rm.2017.14

RECEIVED:
2017-03-31

ACCEPTED:
2017-05-14

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności