Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Mechanika

Mechanika
86(4/14), DOI: 10.7862/rm.2014.57

Endochronic model of plasticity generalizing Sanders theory

Yulij KADASHEVICH, Sergey POMYTKIN

DOI: 10.7862/rm.2014.57

Abstract

The Sanders’s theory of plasticity and quasi-statistical variant of incremental plastic theory with isotropic and kinematic hardening in Novozhilov’s version are generalized in the frameworks of the endochronic approach. The constitutive equations of endochronic theory of inelasticity including the ideas of Sanders, Novozhilov and Valanis are formulated. The relations for the calculation of stresses and strains in uniaxial active and reversible material loadings are proposed. The formulas  are obtained by using the elementary average principle of local values and by the simplest set of material constants and functions. Two types of initial conditions  are considered in the calculations. The results of numerical modeling of inelastic  material behavior under uniaxial active and cyclic loadings are presented. The results are compared with each other and with original Sanders’s theory. The similarity and differences between the generalized endochronic theory and the Sanders’s  version are demonstrated. Several unusual manifestations of inelastic material behavior that require further theoretical analysis, calculations on the complex loading  paths and the experimental verification are noted.

Full text (pdf)

References

1. Sanders J.L.: Plastic stress-strain relations based on linear loading functions. [In:] Proc. U.S. Nat. Cong. of Appl. Mech. (Ann Arbor, MI, 14-18 June 1954), ed. P.M. Naghdi, ASME, New York 1955.
2. Klyushnikov V.D.: The new conceptions in plasticity and deformation theory. J. Appl. Math. and Mech., 4 (1959), 722-731.
3. Ilyushin A.A.: Plasticity. Foundations of the general mathematical theory. Akademija Nauk SSSR, Moscow 1963.
4. Batdorf S.B., Budiansky B.: A mathematical theory of plasticity based on the concept of slip. NASA Technical Note 1871, 1949.
5. Bazant Z.P.: Endochronic theory inelasticity and incremental plasticity. Int. J. Sol. Struc., 9 (1978), 691-714.
6. Mroz Z.: A on the description of anisotropic hardening. J. Mech. Phys. Solids, 3 (1967), 163-175.
7. Kadashevich Yu.I., Novozhilov V.V.: On limit variants of plasticity theory accounting initial microstresses, Mech. Sol., 3 (1980), 93-96.
8. Valanis K.C.: A theory of viscoplasticity without a yield surface. Part I. General theory. Arch. Mech. Stosow., 4 (1971), 517-534.
9. Valanis K.C.: A theory of viscoplasticity without a yield surface. Part II. Application to mechanical behavior of metals. Arch. Mech. Stosow., 4 (1971), 535-551.
10. Kosinski W., Wu H.C.: On steady viscoplastic waves. Endochronic theory, Bull. Pol. Acad. Sci. Techn. Sci., 2 (1978), 109-117.
11. Kadashevich Yu.I., Mikha’lov A.N.: On theory of plasticity without yield surface. Dokl. Phys., 3/254 (1980), 574-576.
12. Watanabe O., Atluri S.N.: Constitutive modeling of cyclic plasticity and creep, using an internal time concept. Int. J. Plast., 2 (1986), 107-134.
13. Kletschkowski T., Schomburg U., Bertram A.: Endochronic viscoplastic material models for filled PTFE. Mech. Mater., 12 (2002), 795-808.
14. Kadashevich Yu.I., Pomytkin S.P.: On the interconnection of plasticity theory taking into account the microstresses and endochronic theory of plasticity. Mech. Sol., 4 (1997), 99-105.
15. Valanis K.C.: Fundamental consequence of a new intrinsic time measure-plasticity as a limit of the endochronic theory. Arch. Mech., 2 (1980), 171-191.

About this Article

TITLE:
Endochronic model of plasticity generalizing Sanders theory

AUTHORS:
Yulij KADASHEVICH (1)
Sergey POMYTKIN (2)

AUTHORS AFFILIATIONS:
(1) Technological University of Plant Polymers, Saint-Petersburg, Russia
(2) University of Aerospace Instrumentation, Saint-Petersburg, Russia

JOURNAL:
Mechanika
86(4/14)

KEY WORDS AND PHRASES:
plasticity, theory, endochronic approach, constitutive equations, quasi-statistical variant

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/mechanika/118

DOI:
10.7862/rm.2014.57

URL:
http://dx.doi.org/10.7862/rm.2014.57

RECEIVED:
2014-06-14

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności