Journal of Mathematics and Applications
06/43, DOI: 10.7862/rf.2020.6
Towards a Non-conformable Fractional Calculus of n-Variables
Francisco Martínez, Juan E. Valdés Nápoles
DOI: 10.7862/rf.2020.6
Abstract
In this paper we present an extension of the non-conformable local fractional derivative, to the case of functions of several variables. Results analogous to those known from the classic multivariate calculus are presented. To show the strength of this approach, we show an extension of the Second Lyapunov Method to the non-conformable local fractional case.
References
- R. Agarwal, S. Hristova, D. O'Regan, Applications of Lyapunov functions to Caputo fractional differential equations, Mathematics 6 (2018) 229; doi:10.3390/math6110229
- T.M. Apostol, Calculus, Volume II, Second edition, Wiley, USA, 1969.
- N.Y. Gozutok, U. Gozutok, Multi-variable conformable fractional calculus, Filomat 32:1 (2018) 45-53.
- P.M. Guzman, L.M. Lugo Motta Bittencourt, J.E. Nápoles V., A note on stability of certain Lienard fractional equation, International Journal of Mathematics and Computer Science 14 (2) (2019) 301-315.
- P.M. Guzman, G. Langton, L.M. Lugo, J. Medina, J.E. Nápoles Valdés, A new definition of a fractional derivative of local type, J. Math. Anal. 9:2 (2018) 88-98.
- R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65-70.
- J.E. Nápoles V., P.M. Guzman, L.M. Lugo, Some new results on nonconformable fractional calculus, Advances in Dynamical Systems and Applications 13 (2) (2018) 167-175.
- J.E. Nápoles V., P.M. Guzman, L.M. Lugo, On the stability of solutions of nonconformable differential equations, Studia Universitatis Babeş-Bolyai Mathematica (to appear).
- N. Sene, Exponential form for Lyapunov function and stability analysis of the fractional differential equations, J. Math. Computer Sci. 18 (2018) 388-397.
About this Article
TITLE:
Towards a Non-conformable Fractional Calculus of n-Variables
AUTHORS:
Francisco Martínez (1)
Juan E. Valdés Nápoles (2)
AUTHORS AFFILIATIONS:
(1) Universidad Politécnica de Cartagena, Departamento de Matemática Aplicada y Estadística, SPAIN
(2) Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, ARGENTINA
JOURNAL:
Journal of Mathematics and Applications
06/43
KEY WORDS AND PHRASES:
Functions of several variables; Fractional partial differential operators.
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/94
DOI:
10.7862/rf.2020.6
URL:
http://dx.doi.org/10.7862/rf.2020.6
RECEIVED:
2019-08-16
ACCEPTED:
2019-12-21
COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów