Journal of Mathematics and Applications
03/43, DOI: 10.7862/rf.2020.3
Solvability of a Quadratic Integral Equation of Fredholm Type Via a Modified Argument
İlyas Dal, Ömer Faruk Temizer
DOI: 10.7862/rf.2020.3
Abstract
References
- R.P. Agarwal, J. Banaś, K. Banaś, D. O'Regan, Solvability of a quadratic Hammerstein integral equation in the class of functions having limits at infinity, J. Int. Eq. Appl. 23 (2011) 157-181.
- R.P. Agarwal, D. O'Regan, Infinite Interval Problems for Differential, Difference and Integral equations, Kluwer Academic Publishers, Dordrecht, 2001.
- R.P. Agarwal, D. O'Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.
- C. Bacoṯiu, Volterra-Fredholm nonlinear systems with modified argument via weakly Picard operators theory, Carpath. J. Math. 24 (2) (2008) 1-19.
- J. Banaś, J. Caballero, J. Rocha, K. Sadarangani, Monotonic solutions of a class of quadratic integral equations of Volterra type, Comput. Math. Appl. 49 (2005) 943-952.
- J. Banaś, M. Lecko, W.G. El-Sayed, Existence theorems of some quadratic integral equation, J. Math. Anal. Appl. 222 (1998) 276-285.
- J. Banaś, R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Func. Spac. Appl. (2013), Article ID 820437, 13 pp.
- M. Benchohra, M.A. Darwish, On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes 10 (1) (2009) 3-10.
- J. Caballero, M.A. Darwish, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type in Hölder spaces, Electron. J. Differential Equations 31 (2014) 1-10.
- J. Caballero, B. Lopez, K. Sadarangani, Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument, Acta Math.Sin. (English Series) 23 (2003) 1719-1728.
- J. Caballero, J. Rocha, K. Sadarangani, On monotonic solutions of an integral equation of Volterra type, J. Comput. Appl. Math. 174 (2005) 119-133.
- K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison Wesley, Reading, M. A 1967.
- S. Chandrasekhar, Radiative transfer, Dover Publications, New York, 1960.
- M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005) 112-119.
- M.A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebras, Commun. Appl. Anal. 11 (2007) 441-450.
- M.A. Darwish, S.K. Ntouyas, On a quadratic fractional Hammerstein-Volterra integral equations with linear modification of the argument, Nonlinear Anal. 74 (2011) 3510-3517.
- M. Dobriṯoiu, Analysis of a nonlinear integral equation with modified argument from physics, Int. J. Math. Models and Meth. Appl. Sci. 3 (2) (2008) 403-412.
- S. Hu, M. Khavani, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261-266.
- T. Kato, J.B. Mcleod, The functional-differential equation y’(x) = ay(λx) + by(x), Bull. Amer. Math. Soc. 77 (1971) 891-937.
- C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Int. Eq. 4 (1982) 221-237.
- M. Lauran, Existence results for some differential equations with deviating argument, Filomat 25 (2) (2011) 21-31.
- V. Mureşan, A functional-integral equation with linear modification of the argument, via weakly Picard operators, Fixed Point Theory 9 (1) (2008) 189-197.
- V. Mureşan, A Fredholm-Volterra integro-differential equation with linear modification of the argument, J. Appl. Math. 3 (2) (2010) 147-158.
- J.M.A. Toledano, T.D. Benavides, G. L Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser Verlag, 1997.
About this Article
TITLE:
Solvability of a Quadratic Integral Equation of Fredholm Type Via a Modified Argument
AUTHORS:
İlyas Dal (1)
Ömer Faruk Temizer (2)
AUTHORS AFFILIATIONS:
(1) İnönü University, Department of Mathematical Education, TURKEY
(2) İnönü Üniversitesi, Eğitim Fakültesi, TURKEY
JOURNAL:
Journal of Mathematics and Applications
03/43
KEY WORDS AND PHRASES:
Fredholm equation; Hölder condition; Schauder fixed point theorem.
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/91
DOI:
10.7862/rf.2020.3
URL:
http://dx.doi.org/10.7862/rf.2020.3
RECEIVED:
2019-08-19
ACCEPTED:
2020-03-03
COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów