Journal of Mathematics and Applications
02/43, DOI: 10.7862/rf.2020.2
Relative Order and Relative Type Oriented Growth Properties of Generalized Iterated Entire Functions
Tanmay Biswas
DOI: 10.7862/rf.2020.2
Abstract
The main aim of this paper is to study some growth properties of generalized iterated entire functions in the light of their relative orders, relative types and relative weak types.
References
- D. Banerjee, N. Mondal, Maximum modulus and maximum term of generalized iterated entire functions, Bull. Allahabad Math. Soc. 27 (1) (2012) 117-131.
- L. Bernal, Crecimiento relativo de funciones enteras. Contribución al estudio de lasfunciones enteras con índice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.
- L. Bernal, Orden relativo de crecimiento de funciones enteras, Collect. Math. 39 (1988) 209-229.
- J. Clunie, The composition of entire and meromorphic functions, Mathematical essays dedicated to A.J. Macintyre, Ohio University Press (1970) 75-92.
- A.S.B. Holland, Introduction to the Theory of Entire Functions, Academic Press, New York and London, 1973.
- B.K. Lahiri, D. Banerjee, Generalized relative order of entire functions, Proc. Nat. Acad. Sci. India 72(A) IV (2002) 351-371.
- C. Roy, Some properties of entire functions in one and several complex variables, Ph.D. Thesis, University of Calcutta, 2010.
- A.P. Singh, Growth of composite entire functions, Kodai Math. J. 8 (1985) 99-102.
- E.C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford University Press, Oxford, 1939.
- G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, 1949.
About this Article
TITLE:
Relative Order and Relative Type Oriented Growth Properties of Generalized Iterated Entire Functions
AUTHORS:
Tanmay Biswas
AUTHORS AFFILIATIONS:
Rajbari, Rabindrapalli, INDIA
JOURNAL:
Journal of Mathematics and Applications
02/43
KEY WORDS AND PHRASES:
Entire function; Growth; Relative order; Relative type; Relative weak type; Composition; Property (A).
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/90
DOI:
10.7862/rf.2020.2
URL:
http://dx.doi.org/10.7862/rf.2020.2
RECEIVED:
2019-11-21
ACCEPTED:
2020-05-04
COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów