Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
09/41, DOI: 10.7862/rf.2018.9

Existence and Convergence Results for Caputo Fractional Volterra Integro-Differential Equations

Ahmed A. Hamoud, M.Sh. Bani Issa, Kirtiwant P. Ghadle, Mohammed Abdulghani

DOI: 10.7862/rf.2018.9

Abstract

In this article, homotopy analysis method is successfully applied to find the approximate solution of Caputo fractional Volterra integro-differential equation. The reliability of the method and reduction in the size of the computational work give this method a wider applicability. Also, the behavior of the solution can be formally determined by analytical approximate. Moreover, we proved the existence and convergence of the solution. Finally, an example is included to demonstrate the validity and applicability of the proposed technique.

Full text (pdf)

References

  1. N. Abel, Solution de quelques problemes a laide dintegrales definites, Christiania Grondahl, Norway (1881) 16-18.
  2. S. Alkan, V. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order, Tbilisi Mathematical Journal 10 (2) (2017) 1-13.
  3. M. AL-Smadi, G. Gumah, On the homotopy analysis method for fractional SEIR epidemic model, Research J. Appl. Sci. Engrg. Technol. 7 (18) (2014) 3809-3820.
  4. S. Behzadi, S. Abbasbandy, T. Allahviranloo, A. Yildirim, Application of homotopy analysis method for solving a class of nonlinear Volterra-Fredholm integro-differential equations, J. Appl. Anal. Comput. 2 (2) (2012) 127-136.
  5. M. Bani Issa, A. Hamoud, K. Ghadle, Giniswamy, Hybrid method for solving nonlinear Volterra-Fredholm integro-differential equations, J. Math. Comput. Sci. 7 (4) (2017) 625-641.
  6. A. Hamoud, A. Azeez, K. Ghadle, A study of some iterative methods for solving fuzzy Volterra-Fredholm integral equations, Indonesian J. Elec. Eng. & Comp. Sci. 11 (3) (2018) 1228-1235.
  7. A. Hamoud, K. Ghadle, On the numerical solution of nonlinear Volterra-Fredholm integral equations by variational iteration method, Int. J. Adv. Sci. Tech. Research 3 (2016) 45-51.
  8. A. Hamoud, K. Ghadle, The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations, Korean J. Math. 25 (3) (2017) 323-334.
  9. A. Hamoud, K. Ghadle, The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro-differential equations, J. Korean Soc. Ind. Appl. Math. 21 (2017) 17-28.
  10. A. Hamoud, K. Ghadle, Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations, J. Indian Math. Soc. 85 (1-2) (2018) 52-69.
  11. A. Hamoud, K. Ghadle, M. Bani Issa, Giniswamy, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math. 31 (3) (2018) 333-348.
  12. A. Hamoud, K. Ghadle, Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations, Journal of Siberian Federal University. Mathematics & Physics 11 (6) (2018) 1-10.
  13. V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Analysis: Theory, Methods and Appl. 69 (10) (2008) 3337-3343.
  14. S. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992.
  15. S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, 2003.
  16. S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Beijing: Higher education press, 2012.
  17. X. Ma, C. Huang, Numerical solution of fractional integro-differential equations by a hybrid collocation method, Appl. Math. Comput. 219 (12) (2013) 6750-6760.
  18. R. Mittal, R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. Appl. Math. Mech. 4 (2) (2008) 87-94.
  19. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.
  20. C. Yang, J. Hou, Numerical solution of integro-differential equations of fractional order by Laplace decomposition method, WSEAS Trans. Math. 12 (12) (2013) 1173-1180.
  21. X. Zhang, B. Tang, Y. He, Homotopy analysis method for higher-order fractional integro-differential equations, Comput. Math. Appl. 62 (8) (2011) 3194-3203.
  22. Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore: World Scientific 6, 2014.
  23. M. Zurigat, S. Momani, A. Alawneh, Homotopy analysis method for systems of fractional integro-differential equations, Neur. Parallel Sci. Comput. 17 (2009) 169-186.

About this Article

TITLE:
Existence and Convergence Results for Caputo Fractional Volterra Integro-Differential Equations

AUTHORS:
Ahmed A. Hamoud (1)
M.Sh. Bani Issa (2)
Kirtiwant P. Ghadle (3)
Mohammed Abdulghani (4)

AUTHORS AFFILIATIONS:
(1) Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, INDIA
Department of Mathematics, Taiz University, YEMEN
(2) Department of Mathematics, P.E.T. Research Foundation Mandya, University of Mysore, INDIA
(3) Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, INDIA
(4) Ministry of Education, Directorate General of Education Ninawa, IRAQ

JOURNAL:
Journal of Mathematics and Applications
09/41

KEY WORDS AND PHRASES:
Homotopy analysis method; Caputo fractional derivative; Volterra integro-differential equation; Approximate solution

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/72

DOI:
10.7862/rf.2018.9

URL:
http://dx.doi.org/10.7862/rf.2018.9

RECEIVED:
2018-04-07

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: