Journal of Mathematics and Applications
7/35, DOI: 10.7862/rf.2012.7
Maximal ideal space of certain alpha-Lipschitz operator algebras
Abbas Ali Shokri, Ali Shokri
DOI: 10.7862/rf.2012.7
Abstract
In a recent paper by A. Ebadian and A.A. Shokri [1], a α-Lipschitz operator from a compact metric space X into a unital bounded commutative Banach algebra B is defined. Let (X,d) be a nonempty compact metric space, 0 < α ~~≤ 1 and
References
- A. Ebadian, A. A. Shokri, On the Lipschitz operator algebras, Archivum mathematicum (BRNO), Tomus 45, 2009, 213-222.
- A. Ebadian, Prime ideals in Lipschitz algebras of nite di erentable function, Honam Math. J. 22, 2000, 21-30.
- B. E. Johnson, Lipschitz spaces, Pac c J. Math, 51, 1975, 177-186.
- D. R. Sherbert, Banach algebras of Lipschitz functions, Pac c J. Math, 13, 1963, 1387-1399.
- D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111, 1964, 240-272.
- H. X. Cao, J. H. Zhang, Z. B. Xu, Characterizations and extensions of Lipschitz-operators, Acta Mathematica Sinica, English Series, 22 (3), 2006, 671-678.
- N. Weaver, Lipschitz algebras, World Scienti c Publishing Co., Inc., River Edge, NJ, 1999.
- N. Weaver, Subalgebras of little Lipschitz algebras, Pac c J. Math., 173, 1996, 283-293.
- T. G. Honary, H. Mahyar, Approximation in Lipschitz algebras, Quest. Math. 23, 2000, 13-19.
- V. Runde, Lectures on Amenability, Springer, 2002.
- W. G. Bade, P. C. Curtis, H. G. Dales, Amenability and weak amenability for Berurling and Lipschitz algebras, Proc. London. Math. Soc. 3, 55, 1987, 359-377.
About this Article
TITLE:
Maximal ideal space of certain alpha-Lipschitz operator algebras
AUTHORS:
Abbas Ali Shokri (1)
Ali Shokri (2)
AUTHORS AFFILIATIONS:
(1) Department of Mathematics, Ahar Branch, Islamic Azad University, Ahar, Iran
(2) Faculty of Mathematical Science, University of Maragheh, Maragheh, Iran
JOURNAL:
Journal of Mathematics and Applications
7/35
KEY WORDS AND PHRASES:
Banach algebra, Lipschitz operator algebras, Maximal ideal space
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/7
DOI:
10.7862/rf.2012.7
URL:
http://dx.doi.org/10.7862/rf.2012.7
RECEIVED:
2010-08-11
ACCEPTED:
2012-02-03
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow