Journal of Mathematics and Applications
04/41, DOI: 10.7862/rf.2018.4
Nonlinear Fractional Differential Equations with Non-Instantaneous Impulses in Banach Spaces
Mouffak Benchohra, Mehdi Slimane
DOI: 10.7862/rf.2018.4
Abstract
This paper is devoted to study the existence of solutions for a class of initial value problems for non-instantaneous impulsive fractional differential equations involving the Caputo fractional derivative in a Banach space. The arguments are based upon Mönch's fixed point theorem and the technique of measures of noncompactness.
References
- S. Abbas, M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses, Appl. Math. Comput. 257 (2015) 190-198.
- S. Abbas, M. Benchohra, M.A. Darwish, New stability results for partial fractional differential inclusions with not instantaneous impulses, Frac. Calc. Appl. Anal. 18 (1) (2015) 172-191.
- S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer-Verlag, New York, 2012.
- S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
- R.P. Agarwal, S. Hristova, D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, New York, 2017.
- R.P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.
- R.R. Akhmerov, M.I. Kamenskii, A.S. Patapov, A.E. Rodkina, B.N. Sadovskii, Measures of Noncompactness and Condensing Operators, trans. from the Russian by A. Iacob, Birkhäuser Verlag, Basel, 1992.
- J.C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid 79 (1985) 53-66.
- J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
- J. Banaś, B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Appl. Math. Lett. 16 (2003) 1-6.
- J. Banaś, K. Sadarangani, On some measures of noncompactness in the space of continuous functions, Nonlinear Anal. 68 (2008) 377-383.
- D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect, Horwood, Chichester, 1989.
- M. Benchohra, J. Henderson, S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol 2, New York, 2006.
- M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal. 12 (4) (2008) 419-428.
- D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers Group, Dordrecht, 1996.
- E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc. 141 (2013) 1641-1649.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
- V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, Worlds Scientific, Singapore, 1989.
- H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980) 985-999.
- H. Mönch, G.F. Von Harten, On the Cauchy problem for ordinary differential equations in Banach spaces, Archiv. Math. Basel 39 (1982) 153-160.
- M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput. 219 (2013) 6743-6749.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
- Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
About this Article
TITLE:
Nonlinear Fractional Differential Equations with Non-Instantaneous Impulses in Banach Spaces
AUTHORS:
Mouffak Benchohra (1)
Mehdi Slimane (2)
AUTHORS AFFILIATIONS:
(1) Laboratory of Mathematics, Djillali Liabes University of Sidi-Bel-Abbès, ALGERIA
(2) Laboratory of Mathematics, Djillali Liabes University of Sidi-Bel-Abbès, ALGERIA
JOURNAL:
Journal of Mathematics and Applications
04/41
KEY WORDS AND PHRASES:
Initial value problem; Impulses; Caputo fractional derivative; Measure of noncompactness; Fixed point; Banach space
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/67
DOI:
10.7862/rf.2018.4
URL:
http://dx.doi.org/10.7862/rf.2018.4
RECEIVED:
2017-12-28
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow