Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
02/41, DOI: 10.7862/rf.2018.2

On the Existence of Solutions of a Perturbed Functional Integral Equation in the Space of Lebesgue Integrable Functions on ℝ+

Waad Al Sayed, Mohamed Abdalla Darwish

DOI: 10.7862/rf.2018.2

Abstract

In this paper, we investigate and study the existence of solutions for perturbed functional integral equations of convolution type using Darbo's fixed point theorem, which is associated with the measure of noncompactness in the space of Lebesgue integrable functions on ℝ+. Finally, we offer an example to demonstrate that our abstract result is applicable.

Full text (pdf)

References

  1. A. Aghajani, Y. Jalilian, K. Sadarangani, Existence of solutions for mixed Volterra-Fredholm integral equations, EJDE 2012 (137) (2012) 1-12.
  2. A. Aghajani, Y. Jalilian, Existence and global attractivity of solutions of a nonlinear functional integral equation, Commun. Nonlinear Sci. Numer. Simul. 15 (11) (2010) 3306-3312.
  3. J. Banaś, A. Chlebowicz, On existence of integrable solutions of a functional integral equation under Carathéodory conditions, Nonlinear Anal. 70 (9) (2009) 3172-3179.
  4. J. Banaś, A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. Lond. Math. Soc. 41 (6) (2009) 1073-1084.
  5. J. Banaś, M. Pasławska-Południak, Monotonic solutions of Urysohn integral equation on unbounded interval, Comput. Math. Appl. 47 (12) (2004) 1947-1954.
  6. J. Banaś, Z. Knap, Integrable solutions of a functional-integral equation, Revista Mat. Univ. Complutense de Madrid 2 (1989) 31-38.
  7. J. Banaś, Z. Knap, Measures of weak noncompactness and nonlinear integral equations of convolution type, J. Math. Anal. Appl. 146 (2) (1990) 353-362.
  8. J. Banaś, J. Rivero, On measures of weak noncompactness, Ann. Mat. Pure Appl. 151 (1988) 213-224.
  9. J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980.
  10. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science & Business Media, 2010.
  11. T.A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.
  12. G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1995) 84-92.
  13. M.A. Darwish, On a perturbed functional integral equation of Urysohn type, Appl. Math. Comput. 218 (2012) 8800-8805.
  14. M.A. Darwish, J. Henderson, Solvability of a functional integral equation under Carathéodory conditions, Commun. Appl. Nonlinear Anal. 16 (1) (2009) 23-36.
  15. M.A. Darwish, On integral equations of Urysohn-Volterra type, Appl. Math. Comput. 136 (2003) 93-98.
  16. M.A. Darwish, Monotonic solutions of a functional integral equation of Urysohn type, PanAm. Math. J. 18 (4) (2008) 17-28.
  17. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
  18. J. Dugundji, A. Granas, Fixed Point Theory, Monografie Matematyczne, PWN, Warsaw, 1982.
  19. G. Emmanuele, Measure of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roum. 25 (4) (1981) 353-358.
  20. G. Emmanuele, Integrable solutions of a functional-integral equation, J. Integral Equations Appl. 4 (1) (1992) 89-94.
  21. H. Hanche-Olsen, H. Holden, The Kolmogorov-Riese compactness theorem, arXiv:0906.4883 [math.CA] 2010.
  22. H. Khosravi, R. Allahyari, A.S. Haghighi, Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness on Lp(ℝ+), Appl. Math. Comput. 260 (2015) 140-147.
  23. D. O'Regan, M. Meehan, Existence Theory for Nonlinear Integral and Integro-differential Equations, Kluwer Academic Publishers, Dordrecht, 1998.
  24. P.P. Zabrejko et al., Integral Equations, Noordhoff International Publishing, The Netherlands, 1975 (Russian edition: Nauka, Moscow, 1968).

About this Article

TITLE:
On the Existence of Solutions of a Perturbed Functional Integral Equation in the Space of Lebesgue Integrable Functions on ℝ+

AUTHORS:
Waad Al Sayed (1)
Mohamed Abdalla Darwish (2)

AUTHORS AFFILIATIONS:
(1) College of Sciences and Humanities, Fahad Bin Sultan University, Tabuk, SAUDI ARABIA
(2) Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, EGYPT

JOURNAL:
Journal of Mathematics and Applications
02/41

KEY WORDS AND PHRASES:
Existence; Convolution; The space of Lebesgue integrable functions; Measure of noncompactness

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/65

DOI:
10.7862/rf.2018.2

URL:
http://dx.doi.org/10.7862/rf.2018.2

RECEIVED:
2018-01-10

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: