Journal of Mathematics and Applications
01/41, DOI: 10.7862/rf.2018.1
On Maximum Induced Matching Numbers of Special Grids
Tayo Charles Adefokun, Deborah Olayide Ajayi
DOI: 10.7862/rf.2018.1
Abstract
A subset M of the edge set of a graph G is an induced matching of G if given any two edges e1, e2 ∈ M, none of the vertices on e1 is adjacent to any of the vertices on e2. Suppose that Max(G), a positive integer, denotes the maximum size of M in G, then, M is the maximum induced matching of G and Max(G) is the maximum induced matching number of G. In this work, we obtain upper bounds for the maximum induced matching number of grid G = G_{n,m}, n ≥ 9, m ≡ 3 mod 4, m ≥ 7, and nm odd.
References
- D.O.A. Ajayi, T.C. Adefokun, Some bounds of the maximum induced matching numbers of certain grids, Acta Universitatis Matthiae Belii, Series Mathematics 25 (2017) 63-71 (Online version available at http://actamath.savbb.sk).
- K. Cameron, Induced matching in intersection graphs, Discrete Math. 278 (2004) 1-9.
- K. Cameron, R. Sritharan, Y. Tang, Finding a maximum induced matching in weakly chordal graphs, Discrete Math. 266 (2003) 133-142.
- K.K. Dabrowski, M. Demange, V.V. Lozin, New results on maximum induced matchings in bipartite graphs and beyond, Theoretical Computer Science 478 (2013) 33-40.
- J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.
- M.C. Golumbic, R.C. Laskar, Irredundancy in circular arc graphs, Discrete Applied Math. 44 (2013) 79-89.
- C. Lane, The strong matching number of a random graph, Australasian Journal of Combinatorics 24 (2001) 47-57.
- H. Michel, M. Lalla, Maximum induced matching algorithms via vertex ordering characterizations, arXiv: 1707.01245 (2017).
- R. Marinescu-Ghemeci, Maximum induced matchings in grids, Springer Proceedings in Math. and Stat. 31 (2012) 177-187.
- L.J. Stockmeyer, V.V. Vazirani, NP-completeness of some generalizations of the maximum matching problem, Information Processing Letters 15 (1982) 14-19.
- M. Zito, Induced Matching in Regular Graphs and Trees, Lecture Notes in Computer Sci. 1665, Springer, Berlin, 1999.
About this Article
TITLE:
On Maximum Induced Matching Numbers of Special Grids
AUTHORS:
Tayo Charles Adefokun (1)
Deborah Olayide Ajayi (2)
AUTHORS AFFILIATIONS:
(1) Department of Computer and Mathematical Sciences, Crawford University, NIGERIA
(2) Department of Mathematics, University of Ibadan, Ibadan, NIGERIA
JOURNAL:
Journal of Mathematics and Applications
01/41
KEY WORDS AND PHRASES:
Induced matching; Grid; Maximum induced matching number; Strong matching number
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/64
DOI:
10.7862/rf.2018.1
URL:
http://dx.doi.org/10.7862/rf.2018.1
RECEIVED:
2017-11-09
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow