Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
12/40, DOI: 10.7862/rf.2017.12

Some Strongly Almost Summable Sequence Spaces

S. K. Sharma, A. Esi

DOI: 10.7862/rf.2017.12

Abstract

References

[1] S. Banach, Theorie Operations Linearies, Chelsea Publishing Co., New York 1955.

[2] P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I* convergence of double sequences, Math. Slovaca 58 (2008) 605-620.

[3] P. Das, P. Malik, On the statistical and I-variation of double sequences, Real Anal. Exchange 33 (2007-2008) 351-364.

[4] A. Esi, Some new sequence spaces defined by a sequence of moduli, Turk. J. Math. 21 (1997) 61-68.

[5] A. Esi, Strongly [V2, Λ2, M, p]-summable double sequence spaces defined by Orlicz function, Int. J. Nonlinear Anal. Appl. 2 (2011) 110-115.

[6] S. Gähler, Linear 2-normietre Rume, Math. Nachr. 28 (1965), 1-43.

[7] M. Gurdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math. 33 (2009) 257-264.

[8] H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jpn. 5 (2001) 47-54.

[9] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc. 64 (2001) 137-147.

[10] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001) 631-639.

[11] P. Kostyrko, T. Salat and W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000) 669-686.

[12] G.G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948) 167-190.

[13] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 345-355.

[14] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Departamento de Matemática, Universidade Estadmal de Campinas, Campinas SP Brasil 1989.

[15] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989) 299-319.

[16] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34 (1983) 77-86.

[17] M. Mursaleen, A. Alotaibi, On I-convergence in radom 2-normed spaces, Math. Slovaca 61 (2011) 933-940.

[18] M. Mursaleen, A.K. Noman, On some new sequence spaces of non absolute type related to the spaces lp and l∞ I, Filomat 25 (2011) 33-51.

[19] M. Mursaleen, A.K. Noman, On some new sequence spaces of non absolute type related to the spaces lp and l∞ II, Math. Commun. 16 (2011) 383-398.

[20] M. Mursaleen, S.A. Mohiuddine and O.H.H. Edely, On ideal convergence of double sequences in intuitioistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010) 603-611.

[21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports 64 (2010) 359-371.

[22] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012) 49-62.

[23] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag Berlin Heidelberg 1983.

[24] K. Raj, S.K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function, Acta Univ. Sapientiae Math. 3 (2011) 97-109.

[25] K. Raj, S.K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, CUBO A Mathematical Journal 14 (2012) 167-190.

[26] K. Raj, S.K. Sharma, Some multiplier sequence spaces defined by a Musielak-Orlicz function in n-normed spaces, New Zealand J. Math. 42 (2012) 45-56.

[27] W. Raymond, Y. Freese and J. Cho, Geometry of Linear 2-Normed Spaces, N. Y. Nova Science Publishers, Huntington 2001.

[28] A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007) 1477-1484.

[29] B.C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Mathematicae Applicatae Sinica 27 (2011) 149-154.

[30] A. Wilansky, Summability Through Functional Analysis, North-Holland Math. Stud. 85, Elsevier Science Publishers B.V. 1984.

About this Article

TITLE:
Some Strongly Almost Summable Sequence Spaces

AUTHORS:
S. K. Sharma (1)
A. Esi (2)

AUTHORS AFFILIATIONS:
(1) Department of Mathematics, Model Institute of Engineering & Technology,Kot Bhalwal, India
(2) Department of Mathematics, Adiyaman University, Adiyaman, Turkey

JOURNAL:
Journal of Mathematics and Applications
12/40

KEY WORDS AND PHRASES:
Paranorm space; I-convergence; Λ-convergent; Orlicz function; Musielak-Orlicz function; n-normed spaces

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/61

DOI:
10.7862/rf.2017.12

URL:
http://dx.doi.org/10.7862/rf.2017.12

RECEIVED:
2017-03-14

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: