Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
10/40, DOI: 10.7862/rf.2017.10

Ergodic Properties of Random Infinite Products of Nonexpansive Mappings

S. Reich, A. J. Zaslavski

DOI: 10.7862/rf.2017.10

Abstract

In this paper we are concerned with the asymptotic behavior of random (unrestricted) infinite products of nonexpansive self-mappings of closed and convex subsets of a complete hyperbolic space. In contrast withourprevious work in this direction, we no longer assume that these subsetsare bounded. We first establish two theorems regarding the stability of the random weak ergodic property and then prove a related generic result.These results also extend our recent investigations regarding nonrandom infinite products.

Full text (pdf)

References

[1] H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38 (1996) 367-426.

[2] H.H. Bauschke, J.M. Borwein and A.S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, Recent Developments in Optimization Theory and Nonlinear Analysis, Contemporary Mathematics 204 (1997) 1-38.

[3] Y. Censor, S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization,  Optimization 37 (1996) 323-339.

[4] J.E. Cohen, Ergodic theorems in demography, Bull. Amer. Math. Soc. 1 (1979) 275-295.

[5] J. Dye, S. Reich, Random products of nonexpansive mappings, Optimization and Nonlinear Analysis, Pitman Research Notes in Mathematics Series 244 (1992)  106-118.

[6] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel 1984.

[7] S. Reich, The alternating algorithm of von Neumann in the Hilbert ball, Dynamic Systems Appl. 2 (1993) 21-25.

[8] S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Analysis 15 (1990) 537-558.

[9] S. Reich, A.J. Zaslavski, Convergence of generic infinite products of nonexpansive and uniformly continuous operators, Nonlinear Analysis 36 (1999) 1049-1065.

[10] S. Reich, A.J. Zaslavski, Generic aspects of metric fixed point theory, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht 2001 557-575.

[11] S. Reich, A.J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics 34, Springer, New York 2014.

[12] S. Reich, A.J. Zaslavski, Asymptotic behavior of infinite products of  nonexpansive mappings, J. Nonlinear Convex. Anal. 17 (2016) 1967-1973.

[13] S. Reich and A.J. Zaslavski, Asymptotic behavior of generic infinite products of nonexpansive mappings, J. Nonlinear Convex Anal. 18 (2017) 17-27.

About this Article

TITLE:
Ergodic Properties of Random Infinite Products of Nonexpansive Mappings

AUTHORS:
S. Reich (1)
A. J. Zaslavski (2)

AUTHORS AFFILIATIONS:
(1) Department of Mathematics, The Technion - Israel Institute of Technology, Haifa, Israel
(2) Department of Mathematics, The Technion - Israel Institute of Technology, Haifa, Israel

JOURNAL:
Journal of Mathematics and Applications
10/40

KEY WORDS AND PHRASES:
Complete metric space; Hyperbolic space; Infinite product; Nonexpansive mapping; Random weak ergodic property

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/59

DOI:
10.7862/rf.2017.10

URL:
http://dx.doi.org/10.7862/rf.2017.10

RECEIVED:
2016-10-23

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: