Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
1/36, DOI: 10.7862/rf.2013.1

A Companion of the generalized trapezoid inequality and applications

Mohammad W. Alomari
Submitted by: Jan Stankiewicz

DOI: 10.7862/rf.2013.1

Abstract

A sharp companion of the generalized trapezoid inequality is introduced. Applications to quadrature formula are pointed out.

Full text (pdf)

References

  1. M.W. Alomari, New sharp inequalities of Ostrowski and generalized trapezoid
    type for the Riemann-Stieltjes integrals and applications, Ukrainian Math. J., to
    appear.
  2. M.W. Alomari, A companion of Ostrowski's inequality for the Riemann-Stieltjes
    integral ∫ba f(t)du(t), where f is of bounded variation and u is of r-H-Holder type
    and applications, Appl. Math. Comput., 219 (2013), 4792-4799.
  3. M.W. Alomari, A companion of Dragomir's generalization of Ostrowski's inequality
    and applications in numerical integration, Ukrainian Mathematical Journal,
    64(4) (2012), 491-510.
  4. M.W. Alomari, A companion of Ostrowski's inequality for mappings whose rst
    derivatives are bounded and applications in numerical integration, Kragujevac
    Journal of Mathematics, 36 (2012), 77-82.
  5. M.W. Alomari, A generalization of companion inequality of Ostrowski's type for
    mappings whose rst derivatives are bounded and applications and in numerical
    integration, Trans. J. Math. Mech., 4(2) (2012), 103-109.
  6. P. Cerone, S.S. Dragomir, C.E.M. Pearce, A generalized trapezoid inequality for
    functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.
  7. P. Cerone and S.S. Dragomir, Trapezoidal-type rules from an inequalities point
    of view, Handbook of Analytic-Computational Methods in Applied Mathematics,
    Editor: G. Anastassiou, CRC Press, New York (2000), 65-134.
  8. P. Cerone and S.S. Dragomir, Midpoint-type rules from an inequalities point of
    view, Handbook of Analytic-Computational Methods in Applied Mathematics,
    Editor: G. Anastassiou, CRC Press, New York (2000), 135-200.
  9. S.S. Dragomit, Ostrowski integral inequality for mappings of bounded variation,
    Bull. Austral. Math. Soc., 60 (1999) 495-508.
  10. S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard In-
    equalities and Applications, RGMIA Monographs, Victoria University, 2000.
    Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html
  11. S.S. Dragomir and Th.M. Rassias (Ed.), Ostrowski Type Inequalities and Applications
    in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
  12. K.L. Tseng, G.S. Yang, S.S. Dragomir, Generalizations of weighted trapezoidal
    inequality for mappings of bounded variation and their applications, Mathematical
    and Computer Modelling, 40 (2004) 77-84.
  13. A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-
    Hadamard type, J. Approx. Th., 115 (2002), 260{288.
  14. S.S. Dragomir, A companion of Ostrowski's inequality for functions of bounded
    variation and applications, RGMIA Preprint, Vol. 5 Supp. (2002) article No. 28.
    [http://ajmaa.org/RGMIA/papers/v5e/COIFBVApp.pdf]
  15. Z. Liu, Another generalization of weighted Ostrowski type inequality
    for mappings of bounded variation, Appl. Math. Lett. accepted DOI: 10.1016/j.aml.2011.09.020
  16. W.-J. Liu, Some Weighted Integral Inequalities with a Parameter and Applications,
    Acta Appl Math., 109 (2010), 389-400.

About this Article

TITLE:
A Companion of the generalized trapezoid inequality and applications

AUTHORS:
Mohammad W. Alomari

AUTHORS AFFILIATIONS:
Department of Mathematics
Faculty of Science
Jerash University, 26150 Jerash, Jordan

SUBMITTED BY:
Jan Stankiewicz

JOURNAL:
Journal of Mathematics and Applications
1/36

KEY WORDS AND PHRASES:
Trapezoid inequality, Midpoint inequality, Ostrowski's in-
equality Bounded variation, Lipschitzian, Monotonic

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/50

DOI:
10.7862/rf.2013.1

URL:
http://dx.doi.org/10.7862/rf.2013.1

RECEIVED:
2011-12-01

REVISITED:
2013-06-30

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: