Journal of Mathematics and Applications
6/39, DOI: 10.7862/rf.2016.6
Some Fixed Point Theorems for G-Nonexpansive Mappings on Ultrametric Spaces and Non-Archimedean Normed Spaces with a Graph
Hamid Mamghaderi, Hashem Parvaneh Masiha
DOI: 10.7862/rf.2016.6
Abstract
A very interesting approach in the theory of fixed point is some general structures was recently given by Jachymski by using the context of metric spaces endowed with a graph. The purpose of this article is to present some new fixed point results for G-nonexpansive mappings defined on an ultrametric space and non-Archimedean normed space which are endowed with a graph. In particular, we investigate the relationship between weak connectivity graph and the existence of fixed point for these mappings.
References
- R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 109-116.
- M. Alfuraidan, On Monotone Pointwise Contractions in Banach Spaces With a Graph, Fixed Point Theory Appl., 2015.
- T. Diagana, Non-Archimedean Linear Operators and Applications, Nova Science Publishers, 2009.
- G. Gwóźdź-Łukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl. 356 no. 2 (2009) 453-463.
- J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 no. 7-8 (2009) 3403-3410.
- J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (4) (2008) 1359-1373.
- W.A. Kirk, N. Shahzad, Some fixed point results in ultrametric spaces, Topology Appl. 159 (15) (2012) 3327-3334.
- J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517.
- J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239.
- J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. 23 (2007) 2205-2212.
- D. O'Regan, A. Petruśel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2) (2008) 1241-1252.
- C. Petalas, T. Vidalis, A fixed point theorem in Non- Archimedean vector spaces, Amer. Math. Soc. 118 (3) (1993) 819-821.
- C. Perez-Garcia, W.H. Schikhof, Locally Convex Spaces Over Non-Archimedean Valued Fields. Cambridge university press, 2010.
- A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 no. 2 (2006) 411-418 (electronic).
- S. Priess-Crampe, P. Ribenboim, Fixed point and attractor theorems for ultrametric spaces, Forum Math. 12 no. 1 (2000) 53-64.
- A.C.M. Ran, M.C.B. Reurings, A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
- A.C.M. Van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, 1978.
About this Article
TITLE:
Some Fixed Point Theorems for G-Nonexpansive Mappings on Ultrametric Spaces and Non-Archimedean Normed Spaces with a Graph
AUTHORS:
Hamid Mamghaderi (1)
Hashem Parvaneh Masiha (2)
AUTHORS AFFILIATIONS:
(1) Faculty of Mathematics, K.N. Toosi University of Technology, Teheran, Iran
(2) Faculty of Mathematics, K. N. Toosi University of Technology, Teheran, Iran
JOURNAL:
Journal of Mathematics and Applications
6/39
KEY WORDS AND PHRASES:
Fixed point, Ultrametric space, Non-Archimedian space, Nonexpansive mapping, Connected Graph
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/48
DOI:
10.7862/rf.2016.6
URL:
http://dx.doi.org/10.7862/rf.2016.6
RECEIVED:
2016-02-17
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow