Journal of Mathematics and Applications
4/39, DOI: 10.7862/rf.2016.4
About a Class of Analytic Functions Defined by Noor-Sălăgean Integral Operator
Olga Engel, Yao Liang Chung
DOI: 10.7862/rf.2016.4
Abstract
In this paper we introduce a new integral operator as the convolution of the Noor and Sălăgean integral operators. With this integral operator we define the class C N S (α), where α ϵ [0,1) and we study some properties of this class.
References
- M. Darus, R.W. Ibrahim, Partial sums of analytic functions of bounded turning with applications, Comp. and Appl. Math. 29 (1) (2010) 81-88.
- S.S. Miller, P.T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker, New York, Basel, 2000.
- P.T. Mocanu, T. Bulboacǎ, G.Şt. Sălăgean, Teoria Geometricǎ a Funcţiilor Univalente, Ed. a II-a, Casa Cǎrţii de Ştiinţǎ, Cluj-Napoca, 2006, 460+9 pag., ISBN 973-686-959-8 (romanian only)
- K.I. Noor, M.A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999) 341-352.
- K.I. Noor, On new classes of integral operators, J. Natur. Geom. 16 (1999) 71-80.
- H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Montain J. Math. 21 (1991) 1099-1125.
- G.Şt. Sălăgean, Subclasses of univalent functions, Lecturer Notes in Math. (Springer Verlag) 1013 (1983) 362-372.
About this Article
TITLE:
About a Class of Analytic Functions Defined by Noor-Sălăgean Integral Operator
AUTHORS:
Olga Engel (1)
Yao Liang Chung (2)
AUTHORS AFFILIATIONS:
(1) Department of Mathematics, Banes- Bolyai University, Cluj Napoca, Romania
(2) School of Mathematical Sciences, University Sain Malaysia, Penang, Malaysia
JOURNAL:
Journal of Mathematics and Applications
4/39
KEY WORDS AND PHRASES:
Noor integral operator, Sălăgean integral operator, Convolution
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/47
DOI:
10.7862/rf.2016.4
URL:
http://dx.doi.org/10.7862/rf.2016.4
RECEIVED:
2016-02-12
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow