Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
2/39, DOI: 10.7862/rf.2016.2

Measure of Noncompactness and Neutral Functional Differential Equations with State-Dependent Delay

M. Benchohra, J. Henderson, I. Medjajdj

DOI: 10.7862/rf.2016.2

Abstract

Our aim in this work is to study the existence  of solutions of first and second order for neutral functional differential equations with state-dependent delay. We use the Mönch's fixed point theorem for the existence of solutions and the concept of measures of noncompactness.

Full text (pdf)

References

[1] S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions. Springer, Cham, 2015.

[2] W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math. 52 (3) (1992) 855-869.

[3] R. R. Akhmerov. M. I. Kamenskii, A. S. Patapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness an Condensing Operators, Birkhäuser Verlag, Basel, 1992.

[4] J. C. Alvárez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid 79 (1985) 53-66.

[5] A. Anguraj, M. M. Arjunan and E. Hernández, Existence results for an impulsive neutral functional differential equation with state-dependent delay, Appl. Anal. 86 (2007) 861-872.

[6] S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay. Differential Integral Equations 23 (2010) 31-50.

[7] K. Balachandran, S. Marshal Anthoni, Existence of solutions of second order neutral functional differential equations, Tamkang J. Math. 30 (1999) 299-309.

[8] A. Baliki and M. Benchohra, Global existence and asymptotic behavior for functional evolution equations, J. Appl. Anal. Comput. 4 (2014) 129-138.

[9] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.

[10] M. V. Barbarossa, H.-O. Walther, Linearized stability for a new class of neutral equations with state-dependent delay, Differ. Equ. Dyn. Syst. 24 (2016) 63-79.

[11] M. Bartha, Periodic solutions for differential equations with state-dependent delay and positive feedback, Nonlinear Anal. TMA 53 (6) (2003) 839-857.

[12] M. Benchohra and I. Medjadj, Global existence results for functional differential equations with delay Commun. Appl. Anal. 17 (2013) 213-220.

[13] Y. Cao, J. Fan and T. C. Gard, The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal. TMA (1992) 95-105.

[14] C. Corduneanu, Integral Equations and Stability of Feedback Systems. Academic Press, New York, 1973.

[15] A. Domoshnitsky, M. Drakhlin and E. Litsyn, On equations with delay depending on solution, Nonlinear Anal. TMA 49 (2002) 689-701.

[16] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North- Holland Mathematics Studies, Vol. 108, North-Holland, Amsterdam, 1985.

[17] D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers Group, Dordrecht, 1996.

[18] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978) 11-41.

[19] F. Hartung, Parameter estimation by quasilinearization in functional differential equations state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. TMA 47 (2001) 4557-4566.

[20] F. Hartung and J. Turi, Identification of parameters in delay equations with state-dependent lays, Nonlinear Anal. TMA 29 (1997) 1303-1318.

[21] F. Hartung, T. L. Herdman and J. Turin, Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Anal. TMA 39 (2000) 305-325.

[22] E. Hernández, Existence of solutions for a second order abstract functional differential equation with state-dependent delay, Electron. J. Differential Equations 21 (2007) 1-10.

[23] E. Hernández and M. A. Mckibben, On state-dependent delay partial neutral functional-differential equations, Appl. Math. Comput. 186 (2007) 294-301.

[24] E. Hernández, A. Prokopczyk and L. A. Ladeira, A note on state-dependent partial functional differential equations with unbounded delay, Nonlinear Anal. RWA 7 (2006) 510-519.

[25] E. Hernández, R. Sakthivel, and A. Tanaka, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations 2008 no. 28 (2008) 1-11.

[26] Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin, 1991.

[27] J. Kisynski, On cosine operator functions and one parameter group of operators, Studia Math. 49 (1972) 93-105.

[28] M. Kozak, A fundamental solution of a second order differential equation in Banach space, Univ. Iagel. Acta Math. 32 (1995) 275-289.

[29] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980) 985-999.

[30] H. Mönch and G. F. Von Harten, On the Cauchy problem for ordinary differential equations in Banach spaces, Archiv. Math. Basel 39 (1982) 153-160.

[31] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

[32] A. Rezounenko, Partial differential equations with discrete and distributed state-dependent delays, J. Math. Anal. Appl. 326 (2007) 1031-1045.

[33] A. Rezounenko and J. WU, A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors, J. Comput. Appl. Math. 190 (2006) 99-113.

[34] J. -G. Si and X.P. Wang, Analytic solutions of a second-order functional differential equation with a state dependent delay, Results Math. 39 (2001) 345-352.

[35] C. C. Travis and G. F. Webb, Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math. (4) (1977) 555-567.

[36] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978) 76-96.

[37] H.-O. Walther, Merging homoclinic solutions due to state-dependent delay. J. Differential Equations 259 (2015) 473-509.

About this Article

TITLE:
Measure of Noncompactness and Neutral Functional Differential Equations with State-Dependent Delay

AUTHORS:
M. Benchohra (1)
J. Henderson (2)
I. Medjajdj (3)

AUTHORS AFFILIATIONS:
(1) Laboratory of Mathematics, University of Sidi Bel-Abbes, Algeria.
(2) Department of Mathematics, Baylor University, Waco,Texas, USA.
(3) Laboratory of Mathematics, University of Sidi Bel-Abbes, Algeria.

JOURNAL:
Journal of Mathematics and Applications
2/39

KEY WORDS AND PHRASES:
Neutral functional differential equation, Mild solution, Infinite delay, State-dependent delay, Fixed point, Semigroup theory, Cosine function, Measure of noncompactness.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/45

DOI:
10.7862/rf.2016.2

URL:
http://dx.doi.org/10.7862/rf.2016.2

RECEIVED:
2016-05-26

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: