Journal of Mathematics and Applications
06/38, DOI: 10.7862/rf.2015.6
Problem with integral condition for evolution equation
P.I. Kalenyuk, G. Kuduk, I.V. Kohut, Z.M. Nytrebych
DOI: 10.7862/rf.2015.6
Abstract
We propose a method of solving the problem with nonhomogeneous integral condition for homogeneous evolution equation with abstract operator in a linear space $H$. For right-hand side of the integral condition which belongs to the special subspace $Lsubseteq H$, in which the vectors are represented using Stieltjes integrals over a certain measure, the solution of the problem is represented in the form of Stieltjes integral over the same measure.
References
- Hille E., Phillips R.J. Functional analysis and semigroups, Amer. Math. Soc., 1982, Vol. 31, 820 p.
- Krein S. Linear di erential equations in Banach space, Amer. Math. Soc., 1971, Vol. 29, 395 p.
- Pazy A. Semigroups of linear operators and applications to partial di erential equations, New York: Springer-Verlag, 1983, 287 p.
- Yosida K. Functional analysis, New York: Springer-Verlag, 1980, 513 p.
- Ionkin N. I. Solving a boundary value problem in heat conduction theory with nonlocal boundary conditions, Di . equations, 1977, Vol. 13, No 2, p. 294-304. (in Russian).
- Fardigola L. V. Integral boundary value problem in a strip, Math. notes, 1993, Vol. 53, No 6. p. 122-129. (in Russian).
- Pulkina L. S. Nonlocal problem with integral conditions for hyperbolic equation, Di . equations, 2004, Vol. 40, No 7, p. 887-892.
- Cannon J. R. The solution of the heat equation. Subject to the speci cation of energy, Quart. Appl. Math., 1963, Vol. 21, p. 155-160.
- Cannon J. R., Rundell W. An inverse problem for an elliptic partial di erential equation, J. Math. Anal. Appl., 1987, Vol. 126, p. 329-340.
- Bouziani A. Initial boundary-value problems for a class of pseudoparabolic equations with integral boundary conditions, J. Math. Anal. Appl., 2004, Vol. 291, p. 371-386.
- Kalenyuk P. I., Kohut I. V., Nytrebych Z. M. Problem with integral condition for a partial di erential equation of the rst order with respect to time, J. Math. Sci., 2012, Vol. 181, No 3, p. 293-304.
- Kalenyuk P. I., Baranetskyi Ya. Ye., Nytrebych Z. N. Generalized method of separation of variables, Kyiv: Naukova dumka, 1993. 232 p. (in Russian).
- Kalenyuk P. I., Nytrebych Z. M. General ized scheme of separation of variables. Di erential-symbol method, Lviv: Publishing house of Lviv Polytechnic National University, 2002, 292 p. (in Ukrainian).
About this Article
TITLE:
Problem with integral condition for evolution equation
AUTHORS:
P.I. Kalenyuk (1)
G. Kuduk (2)
I.V. Kohut (3)
Z.M. Nytrebych (4)
AUTHORS AFFILIATIONS:
(1) Lviv Polytechnic National University, Lviv, Ukraine
University of Rzeszów, Rejtana str 16 C, Rzeszów, Poland
(2) a graduate of the Rzeszów University, Rejtana str 16 C, Rzeszów, Poland
(3) Lviv Polytechnic National University, Lviv, Ukraine
(4) Lviv Polytechnic National University, Lviv, Ukraine
JOURNAL:
Journal of Mathematics and Applications
06/38
KEY WORDS AND PHRASES:
dierential-symbol method, evolution equation, problem with integral condition
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/33
DOI:
10.7862/rf.2015.6
URL:
http://dx.doi.org/10.7862/rf.2015.6
RECEIVED:
2014-02-08
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow