Journal of Mathematics and Applications
09/37, DOI: 10.7862/rf.2014.9
On differential sandwich theorems of analytic functions defined by certain generalized linear operator
T. M. Seoudy, M. K. Aouf
DOI: 10.7862/rf.2014.9
Abstract
References
- R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), no. 1, 87-94.
- F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.
- M. K. Aouf and A. O.Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis, 21(2010), 7-20.
- S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446.
- T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35 (2002), no. 2, 287-292.
- T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
- A. Cătaş, G. I. Oros and G. Oros, Differential subordinations associated with multiplier transformations, Abstract Appl. Anal., 2008 (2008), ID 845724, 1-11.
- N. E. Cho and T. G. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.
- J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
- J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003), 7-18.
- R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p−valent functions, Math. Comput. Modelling, 51(2010), 349-360.
- Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysŝh. Učebn. Zaved. Mat., 10 (1978), 83-89 ( in Russian).
- R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-658.
- A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
- S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
- V. O. Nechita, Differential subordinations and superordinations for analytic functions defined by the generalized Sălăgean derivative, Acta Univ. Apulensis, 16(2008), 143-156.
- S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
- St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Sco., 49 (1975), 109-115.
- H. Saitoh, A linear operator and its applications of fiest order differential subordinations, Math. Japon. 44 (1996), 31-38.
- G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013 , (1983), 362 - 372 .
- C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS), 29 (2008), no. 2, 419-430.
- T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr.Math. Anal. Appl., 3 (2006), no. 1, Art. 8, 1-11.
- N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci., 23 (2000), no. 8, 521-527.
About this Article
TITLE:
On differential sandwich theorems of analytic functions defined by certain generalized linear operator
AUTHORS:
T. M. Seoudy (1)
M. K. Aouf (2)
AUTHORS AFFILIATIONS:
(1) Department of Mathematics,, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
(2) Department of Mathematics,, Faculty of Science, Mansoura 35516
JOURNAL:
Journal of Mathematics and Applications
09/37
KEY WORDS AND PHRASES:
Analytic function, Hadamard product, differential subordination, superordination, linear operator
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/27
DOI:
10.7862/rf.2014.9
URL:
http://dx.doi.org/10.7862/rf.2014.9
RECEIVED:
2913-08-01
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow