Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
9/36, DOI: 10.7862/rf.2013.9

On a study of double gai sequence space

N. Subramanian, U. K. Misra

DOI: 10.7862/rf.2013.9

Abstract

Let X2 denote the space of all prime sense double gai
sequences and L2 the space of all prime sense double analytic sequences.
This paper is devoted to the general properties of X2

Full text (pdf)

References

  1. T.Apostol, Mathematical Analysis, Addison-wesley , London, 1978.
  2. M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad.Math., 21(2) (1999), 193-200.
  3. C.Bektas and Y.Altin, The sequence space `M (p; q; s) on seminormed spaces,Indian J. Pure Appl. Math., 34(4) (2003), 529-534.
  4. T.J.I'A.Bromwich, An introduction to the theory of in nite series Macmillan and Co.Ltd. ,New York, (1965).
  5. J.C.Burkill and H.Burkill, A Second Course in Mathematical Analysis Cambridge University Press, Cambridge, New York, (1980).
  6. R.Colak and A.Turkmenoglu, The double sequence spaces `2 1(p); c20 (p) and c2(p), (to appear).
  7. M.Gupta and P.K.Kamthan,In nite matrices and tensorial transformations, Acta Math. , Vietnam 5 (1980), 33-42.
  8. G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
  9. M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961. 
  10. J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10  (1971), 379-390.
  11. I.J.Maddox, Sequence spaces de ned by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
  12. F.Moricz, Extentions of the spaces c and c0 from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
  13. F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong
    regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988),
    283-294.
  14. M.Mursaleen,M.A.Khan and Qamaruddin, Di erence sequence spaces de ned by
    Orlicz functions, Demonstratio Math. , Vol. XXXII (1999), 145-150.
  15. H.Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
  16. W.Orlicz, Uber Raume LM Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
  17. S.D.Parashar and B.Choudhary, Sequence spaces de ned by Orlicz functions,
    Indian J. Pure Appl. Math. , 25(4)(1994), 419-428.
  18. K.Chandrasekhara Rao and N.Subramanian, The Orlicz space of entire sequences,
    Int. J. Math. Math. Sci., 68(2004), 3755-3764.
  19. W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded,
    Canad. J. Math., 25(1973), 973-978.
  20. B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math.,
    34(3), (2003), 231-237.
  21. B.C.Tripathy,M.Et and Y.Altin, Generalized di erence sequence spaces dened by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.
  22. A.Turkmenoglu, Matrix transformation between some classes of double sequences,
    Jour. Inst. of math. and Comp. Sci. (Math. Seri. ), 12(1), (1999), 23-31.
  23. A.Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).
  24. P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York , 1981.
  25. M.Gupta and P.K.Kamthan, In nite Matrices and tensorial transformations, Acta Math. Vietnam 5, (1980), 33-42.
  26. N.Subramanian, R.Nallswamy and N.Saivaraju, Characterization of entire sequences via double Orlicz space, Internaional Journal of Mathematics and Mathemaical Sciences, Vol.2007(2007), Article ID 59681, 10 pages.
  27. A.Gokhan and R.Colak, The double sequence spaces cP2(p) and cPB2 (p), Appl. Math. Comput., 157(2), (2004), 491-501.
  28. A.Gokhan and R.Colak, Double sequence spaces l2, ibid., 160(1), (2005), 147-153.
  29. M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
  30. M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J.Math. Anal. Appl., 288(1), (2003), 223-231.
  31. M.Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
  32. M.Mursaleen and O.H.H. Edely,Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
  33. B.Altay and F.Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
  34. F.Basar and Y.Sever, The space Lp of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
  35. N.Subramanian and U.K.Misra, The semi normed space de ned by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
  36. H.Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24(2), (1981), 169-176.
  37. N.Subramanian and U.K.Misra, Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).
  38. N.Subramanian, B.C.Tripathy and C.Murugesan, The double sequence space of G2, Fasciculi Math. , 40, (2008), 91-103.
  39. N.Subramanian, B.C.Tripathy and C.Murugesan, The Cesaro of double entire sequences, International Mathematical Forum, 4 no.2(2009), 49-59.
  40. N.Subramanian and U.K.Misra, The Generalized double of gai sequence spaces, Fasciculi Math., 43, (2010).
  41. N.Subramanian and U.K.Misra, Tensorial transformations of double gai sequence spaces, International Journal of Computational and Mathematical Sciences, 3:4, (2009), 186-188.
  42. Erwin Kreyszig, Introductory Functional Analysis with Applications, by John wiley and sons Inc. , 1978.
  43. M.Mursaleen and S.A.Mohiuddine, Regularly s-conservative and s-coercive four dimensional matrices, Computers and Mathematics with Applications, 56(2008), 1580-1586.
  44. M.Mursaleen and S.A.Mohiuddine, On s-conservative and boundedly s-conservative
    four dimensional matrices, Computers and Mathematics with Applications, 59(2010), 880-885.
  45. M.Mursaleen and S.A.Mohiuddine, Double

About this Article

TITLE:
On a study of double gai sequence space

AUTHORS:
N. Subramanian (1)
U. K. Misra (2)

AUTHORS AFFILIATIONS:
(1) Department of Mathematics,SASTRA University,
Thanjavur-613 401, India.
(2) Department of Mathematics, Berhampur University,
Berhampur-760 007, Odissa, India

JOURNAL:
Journal of Mathematics and Applications
9/36

KEY WORDS AND PHRASES:
gai sequence, analytic sequence, double sequence, dual, mono-
tone metric.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/17

DOI:
10.7862/rf.2013.9

URL:
http://dx.doi.org/10.7862/rf.2013.9

RECEIVED:
2013-03-05

REVISITED:
2013-05-10

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: