Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
3/36, DOI: 10.7862/rf.2013.3

In uence of boundary conditions on 2D wave propagation in a rectangle

N. K. Ashirbayev, J. N. Ashirbayeva

DOI: 10.7862/rf.2013.3

Abstract

Work is devoted to generalization of a di erential method of spatial characteristics to case of the at task about distribution of waves in rectangular area of the nal sizes with gaps in boundary conditions. On the basis of the developed numerical technique are received the settlement certainly - di erential ratios of  dynamic tasks in special points of front border of rectangular area, where boundary conditions on coordinate aren't continuous. They su er a rupture of the rst sort in points in which action P - gurative dynamic loading begins. Results of research are brought to the numerical decision.

Full text (pdf)

References

  1. Butler D.S., (1960). The numerical solution of hyperbolic systems of partial differential equations in three independent variables. Volume 255.232-252. Proc. Roy. Soc.,London.
  2. Clifton R.J., (1967). A di erence method for plane problems in dynamic elasticity. Volume 25(1), 97-116 Quart. Appl. Math.
  3. Ashirbayev  N.K., Baiteliyev T.B., Karimbayev T.D., (1987). Analytical research of in uence of foreign particulates on an elastic rectangle. Volume 22(4), 554-561 Mechanics of solids, Allerton Press.Inc.
  4. Ashirbayev N.K., Karimbayev T.D., Muhametova H.M., Skibin V.A. (1984). Settlement assessment of detectability of defect ultrasonic method. Volume (1125), 234-243 Composite and ceramic materials in an avia engine plants.
  5. Erzhanov Zh.S., Karimbayev T.D., Baiteliyev T.B. (1983) Two-dimensional waves of tension in homogeneous and structural and non-uniform environments. 172.Alma-ata:Science.
  6. Naval I.K., Sabodash P.F. (1974) The numerical solution of a task on distribution of waves of tension in the continuous cylinder of variable radius.News of AN of MSSR.  Cer.phys.-techn.and math.sciences,volume, No. 3, 27-35.
  7. Nemchenov V.V., Cherednichenko R.A.(1982)Application of a method of spatial characteristics and Bubnov's method-Galerkina to the solution of dynamic tasks for elastic semi-space. Analit.Metods and use of the COMPUTER in mechanics of rocks. 175-178. Novosibirsk.
  8. Recker W.W. (1970)A numerical solution of three - dimensional problems in dynamic  elasticity. volume 1 (37) 72-79. I.Appl. Mech.
  9. Recker W.W. (1971) A di erence method for plane problems in magnetoelasto-dynamics. Int. J. Numer. Met. Eng., volume 4 (3),361-377.
  10. Rimskyi V.K.,(1979) Sabodash P.F. Numerical modeling of the dynamic contact (mixed) task for an elastic layer of constant thickness. volume 14 (5) 662-669 Mechanics of solids, Allerton Press. Inc.
  11. Tarabrin G.T.(1982) Numerical solution of non-stationary problems of dynamics of the anisotropic elastic environment. 1982, volume .17(2)181-193.Mechanics of solids, Allerton Press. Inc..
  12. Habberstad I.L.(1971) A two - dimensional numerical solutions for elastic waves in variously con gured rods.Volume 2(38) 64-71.I.Appl.Mech.
  13. Chaika T.I.(1983) To a method of spatial characteristics. volume 38(1) 87-91.Moscow University Mechanics Bulletin.
  14. Nowacki W. (1986) Thermoelasticity. PWN - Polish Scienti c Publisher, Warszawa, Pergamon Press, New York, Toronto, Sydney, Paris, Frankfurt.

About this Article

TITLE:
In uence of boundary conditions on 2D wave propagation in a rectangle

AUTHORS:
N. K. Ashirbayev (1)
J. N. Ashirbayeva (2)

AUTHORS AFFILIATIONS:
(1) .South Kazakhstan State University,
M. Auezov Shymkent University,
160000 Shymkent. Kazakhstan.. (afiliacja nr 1 dla N. K. Ashirbayev)
... (afiliacja nr 2 dla N. K. Ashirbayev)
...
(2) .South Kazakhstan State University,
M. Auezov Shymkent University,
160000 Shymkent. Kazakhstan.. (afiliacja nr 1 dla J. N. Ashirbayeva)
... (afiliacja nr 2 dla J. N. Ashirbayeva)
...

JOURNAL:
Journal of Mathematics and Applications
3/36

KEY WORDS AND PHRASES:
isotropic environment, dynamic load, plane deformation,
special point, tension, speed, wave progress, numerical solution, algorithm

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/11

DOI:
10.7862/rf.2013.3

URL:
http://dx.doi.org/10.7862/rf.2013.3

RECEIVED:
2012-08-22

REVISITED:
2012-10-12

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: