Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
7/44, DOI: 10.7862/rf.2021.7

On Multiplicative (Generalized)-Derivations and Central Valued Conditions in Prime Rings

Gurninder S. Sandhu, Ayşe Ayran, Neşet Aydin

DOI: 10.7862/rf.2021.7

Abstract

Let R be a prime ring with multiplicative (generalized)-derivations (F, f ) and (G, g) on R. This paper gives a number of central valued algebraic identities involving F and G that are equivalent to the commutativity of R under some suitable assumptions. Moreover, in order to optimize our results, we show that the assumptions taken cannot be relaxed.

Full text (pdf)

References

  1. E. Albaş, On generalized derivations satisfying certain identities, Ukrain. Math. J. 63 (1) (2011) 596-602. DOI: 10.1007 /s11253-011-0535-7
  2. A. Ali, B. Dhara, S. Khan, F. Ali, Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. 44 (6) (2015) 1293-1306.
  3. M. Ashraf, N. Rehman, On derivations and commutativity in prime rings, East-West J. Math. 3 (1) (2001) 87-91.
  4. M. Ashraf, A. Ali, S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31 (2007) 415-421.
  5. H.E. Bell, W.S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1) (1987) 92-101. DOI: 10.4153 /CMB-1987-014-x
  6. D.K. Camci, N. Aydin, On multiplicative (generalized)-derivations in semiprime rings, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66 (1) (2017) 153-164. DOI:10.1501/Commua1 0000000784
  7. B. Dhara, S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. 86 (2013) 65-79. DOI: 10.1007/s00010-013-0205-y
  8. B. Dhara, K.G. Pradhan, A note on multiplicative (generalized)-derivations with annihilator conditions, Georgian Math. J. 23 (2) (2016) 191-198. DOI:10.1515/gmj-2016-0020
  9. I. Gusić, A note on generalized derivations of prime rings, Glasnik Mate. 40 (60) (2005) 47-49.
  10. S. Huang, Generalized reverse derivations and commutativity of prime rings, Commun. Math. 27 (2019) 43-50. DOI:10.2478/cm-2019-0004
  11. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100. DOI: 10.2307/2032686
  12. N. Rehman, R.M. Al-Omary, N.M. Muthana, A note on multiplicative (generalized) (α, β)−derivations in prime rings, Annales Math. Silesianae 33 (2019) 266-275.
  13. G.S. Sandhu, D. Kumar, A note on derivations and Jordan ideals of prime rings, AIMS Math. 2 (4) (2017) 580-585. DOI:10.3934/Math.2017.4.580; correction 4 (3) (2019) 684-685. OI:10.3934/Math.2019.3.684
  14. G.S. Sandhu, D. Kumar, Derivations satisfying certain algebraic identities on Lie ideals, Math. Morav. 23 (2) (2019) 79-86. DOI:10.5937/MatMor1902079S

About this Article

TITLE:
On Multiplicative (Generalized)-Derivations and Central Valued Conditions in Prime Rings

AUTHORS:
Gurninder S. Sandhu (1)
Ayşe Ayran (2)
Neşet Aydin (3)

AUTHORS AFFILIATIONS:
(1) Patel Memorial National College, Department of Mathematics, INDIA
(2) Çanakkale Onsekiz Mart University, Department of Mathematics, TURKEY
(3) Çanakkale Onsekiz Mart University, Department of Mathematics, TURKEY

JOURNAL:
Journal of Mathematics and Applications
7/44

KEY WORDS AND PHRASES:
Prime ring; Multiplicative generalized derivation; One-sided ideal; Commutativity.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/105

DOI:
10.7862/rf.2021.7

URL:
http://dx.doi.org/10.7862/rf.2021.7

RECEIVED:
2020-11-26

ACCEPTED:
2021-05-13

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności