Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
6/44, DOI: 10.7862/rf.2021.6

Zero-sum Games on a Product of Staircase-Function Finite Spaces

Vadim Romanuke

DOI: 10.7862/rf.2021.6

Abstract

A tractable method of solving zero-sum games defined on a product of staircase-function finite spaces is presented. The method is based on stacking solutions of “smaller” matrix games, each defined on an interval where the pure strategy value is constant. The stack is always possible, even when only time is discrete, so the set of pure strategy possible values can be continuous. Any combination of the solutions of the “smaller” matrix games is a solution of the initial zero-sum game.

Full text (pdf)

References

  1. M. Arblaster, Air Traffic Management. Economics, Regulation and Governance, Elsevier, 2018.
  2. M.C. Gelhausen, P. Berster, D. Wilken, Airport Capacity Constraints and Strategies for Mitigation, Academic Press, 2019.
  3. N.A. Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press, Cambridge, UK, 1999.
  4. D. Hirshleifer, D. Jiang, Y.M. DiGiovanni, Mood beta and seasonalities in stock returns, Journal of Financial Economics 137 (1) (2020) 272-295.
  5. S. Kalaiselvam, R. Parameshwaran, Chapter 7. Seasonal Thermal Energy Storage, in: Thermal Energy Storage Technologies for Sustainability. Systems Design, Assessment and Applications, Academic Press, 2014, 145-162.
  6. F. Loesche, T. Ionescu, Mindset and Einstellung Effect, in: Encyclopedia of Creativity, Academic Press, 2020, 174-178.
  7. N. Nisan, T. Roughgarden, É. Tardos, V.V. Vazirani, Algorithmic Game Theory, Cambridge University Press, Cambridge, UK, 2007.
  8. V.V. Romanuke, Theory of Antagonistic Games, New World - 2000, Lviv, 2010.
  9. V.V. Romanuke, Convergence and estimation of the process of computer implementation of the optimality principle in matrix games with apparent play horizon, Journal of Automation and Information Sciences 45 (10) (2013) 49-56.
  10. V.V. Romanuke, Theoretic-game methods of identification of models for multistage technical control and run-in under multivariate uncertainties (a Dissertation for the Doctoral Degree of Technical Sciences in Specialty 01.05.02 Mathematical Modeling and Computational Methods), Vinnytsia National Technical University, Vinnytsia, Ukraine, 2014 (in Ukrainian).
  11. V.V. Romanuke, Approximation of unit-hypercubic infinite antagonistic game via dimension-dependent irregular samplings and reshaping the payoffs into flat matrix wherewith to solve the matrix game, Journal of Information and Organizational Sciences 38 (2) (2014) 125-143.
  12. V.V. Romanuke, Discretization of continuum antagonistic game on unit hypercube and transformation of multidimensional matrix for solving of the corresponding matrix game, Journal of Automation and Information Sciences 47 (2) (2015) 77-86.
  13. V.V. Romanuke, Finite approximation of continuous noncooperative two-person games on a product of linear strategy functional spaces, Journal of Mathematics and Applications 43 (2020) 123-138.
  14. N.N. Vorob’yov, Game Theory Fundamentals. Noncooperative Games, Nauka, Moscow, 1984 (in Russian).
  15. N.N. Vorob’yov, Game Theory for Economists-Cyberneticists, Nauka, Moscow, 1985 (in Russian).
  16. J. Yang, Y.-S. Chen, Y. Sun, H.-X. Yang, Y. Liu, Group formation in the spatial public goods game with continuous strategies, Physica A: Statistical Mechanics and its Applications 505 (2018) 737-743.
  17. Y. Yang, J. DeFrain, A. Faruqui, Conceptual discussion on a potential hidden cross-seasonal storage: Cross-seasonal load shift in industrial sectors, The Electricity Journal 33 (8) (2020) 106846.
  18. Z. Zhou, Z. Jin, Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time, Insurance: Mathematics and Economics 94 (2020) 100-108.

About this Article

TITLE:
Zero-sum Games on a Product of Staircase-Function Finite Spaces

AUTHORS:
Vadim Romanuke

AUTHORS AFFILIATIONS:
Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, POLAND

JOURNAL:
Journal of Mathematics and Applications
6/44

KEY WORDS AND PHRASES:
Game theory; Payoff functional; Staircase-function strategy; Matrix game.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/104

DOI:
10.7862/rf.2021.6

URL:
http://dx.doi.org/10.7862/rf.2021.6

RECEIVED:
2021-03-29

ACCEPTED:
2021-05-13

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności