Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Journal of Mathematics and Applications

Journal of Mathematics and Applications
4/44, DOI: 10.7862/rf.2021.4

Measures of Growth and Approximation of Entire Harmonic Functions in n-Dimensional Space in Some Banach Spaces

Devendra Kumar

DOI: 10.7862/rf.2021.4

Abstract

The relationship between the classical order and type of an entire harmonic function in space ℝn, n ≥ 3, and the rate of its best harmonic polynomial approximation for some Banach spaces of functions harmonic in the ball of radius R has been studied.

Full text (pdf)

References

  1. H. Beitmen, A. Erdeiy, Vysshye Transtsendentnye Funktsyy, 2nd edition, Nauka, Moscow, 1974, p. 296.
  2. P.L. Duren, B.W. Romberg, A.L. Shields, Linear functionals in Hp spaces with 0 < p < 1, J. Reine Angew. Math. 238 (1969) 4-60.
  3. A.J. Fryant, Growth of entire harmonic functions in ℝ3, J. Math. Anal. Appl. 66 (1978) 599-605.
  4. T.B. Fugard, Growth of entire harmonic functions in ℝn, n ≥ 2, J. Math. Anal. Appl. 74 (1) (1980) 289-291.
  5. M.I. Gvaradze, On one class of spaces of analytic functions, Mat. Zametki 21 (2) (1977) 141-150.
  6. G.H. Hardy, J.E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (3) (1931) 403-439.
  7. M. Harfaoui, Generalized order and best approximation of entire function in Lp-norm, Intern. J. Math. and Math. Sci. 2010 (2010) 1-15.
  8. I.I. Ibragimov, N.I. Shikhaliev, On the best polynomial approximation in one space of analytic functions, Dokl. Akad. Nauk SSSR 227 (2) (1976) 280-283.
  9. I.I. Ibragimov, N.I. Shikhaliev, On the best approximation in the mean for analytic functions in the space Ap( |z| < 1), Spets. Vopr. Teor. Funkts. 1 (1977) 84-96.
  10. G.P. Kapoor, A. Nautiyal, Approximation of entire harmonic functions in ℝ3, Indian J. Pure and Appl. Math. 13 (9) (1982) 1024-1030.
  11. G.P. Kapoor, A. Nautiyal, On the growth of harmonic functions in ℝ3, Demonstr. Math. 16 (4) (1983) 811-819.
  12. D. Kumar, The growth of harmonic functions in Hyperspheres, Demonstr. Math. 32 (4) (1999) 717-724.
  13. D. Kumar, Growth and approximation of entire harmonic functions in ℝn, n > 3, Georgion Math. J. 15 (1) (2008) 1-12.
  14. D. Kumar, Growth and approximation of solutions to a class of certain linear partial differential equations in ℝ, Mathematica Slovaca, 64 (1) (2014) 139-154.
  15. D. Kumar, H.S. Kasana, On maximum term, maximum modulus and approximation error of an entire harmonic function in ℝ3, Rev. Mat. Univ. Parma 6 (1) (1998) 215-223.
  16. D. Kumar, H.S. Kasana, Approximation of entire harmonic functions in ℝ3 in Lβ-norm, Fasciculi Math. 34 (2004) 55-64.
  17. D. Kumar, G.S. Srivastava, H.S. Kasana, Approximation of entire harmonic functions in ℝ3 having index-pair (p, q), Anal. Numer. Theor. Approx. 20 (1-2) (1991) 47-57.
  18. A.R. Reddy, A contribution to best approximation in the L2-norm, J. Approx. Theory 11 (11) (1974) 110-117.
  19. G.S. Srivastava, Generalized growth of entire harmonic functions, Fasciculi Math. 40 (2008) 79-89.
  20. G.S. Srivastava, S. Kumar, Uniform approximation of entire functions on compact sets and their generalized growth, New Zealand J. Math. 39 (2009) 33-43.
  21. M. Shaker Abdu-Hussein, G.S. Srivastava, On the generalized type and approximation of entire harmonic functions in ℝ3 having index-pair (p, q), Istanbul Univ. Fem. Fak. Mat. Der. 60 (2001) 1-17.
  22. Y. Stein, H. Veis, , Vvedenye v Harmonycheskyi Analyz na Evklydovykh Prostranstvakh, Moskow, Myr. 1974, p. 336.
  23. A. Tyman, V.N. Trofymov, Vvedenye v Teoryiu Harmony Ches Kykh Funktsii, Nauka, Moscow, 1968, p. 208.
  24. S.B. Vakarchuk, On the best polynomial approximation of analytic functions in the space Bp,q,λ, Dokl. Akad. Nauk Ukr. SSR, Ser. Fiz-Mat. Tekh. Nauk. 8 (1989) 6-9.
  25. S.B. Vakarchuk, S.I. Zhir, Best polynomial approximations of entire transcendental functions of the generalized order of growth in Banach spaces ε’p(G) and εp(G), p ≥ 1, Ukr. Mat. Vestn. 8 (2) (2011) 255-291.
  26. S.B. Vakarchuk, S.I. Zhir, On the best polynomial approximation of entire transcendental functions of many complex variables in some Banach spaces, Ukr. Math. J. 66 (12) (2015) 1793-1811.
  27. O.V. Veselovskaia, Oroste tselykh harmonycheskykh v funktsyi, Yzv. Vuzov. Matem. 10 (1983) 13-17.

About this Article

TITLE:
Measures of Growth and Approximation of Entire Harmonic Functions in n-Dimensional Space in Some Banach Spaces

AUTHORS:
Devendra Kumar

AUTHORS AFFILIATIONS:
Al-Baha University, Faculty of Sciences, Department of Mathematics, SAUDI ARABIA

JOURNAL:
Journal of Mathematics and Applications
4/44

KEY WORDS AND PHRASES:
Entire harmonic function; Approximation errors; Banach spaces; order and type; Gegenbauer polynomials and spherical harmonics.

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/102

DOI:
10.7862/rf.2021.4

URL:
http://dx.doi.org/10.7862/rf.2021.4

RECEIVED:
2020-05-11

ACCEPTED:
2021-03-30

COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności