Journal of Mathematics and Applications
2/44, DOI: 10.7862/rf.2021.2
Extremal Solutions to a Coupled System of Nonlinear Fractional Differential Equations with ψ-Caputo Fractional Derivatives
Choukri Derbazi, Zidane Baitiche, Mouffak Benchohra, John R. Graef
DOI: 10.7862/rf.2021.2
Abstract
Using the well-known monotone iterative technique together with the method of upper and lower solutions, the authors investigate the existence of extremal solutions to a class of coupled systems of nonlinear fractional differential equations involving the ψ-Caputo derivative with initial conditions. As applications of this work, two illustrative examples are presented.
References
- S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Dev. Math., 27, Springer, New York, 2015.
- S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Sci. Publ., New York, 2014.
- S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
- S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 21 (2018) 1027-1045.
- S. Abbas, M. Benchohra, B. Samet, Y. Zhou, Coupled implicit Caputo fractional q-difference systems, Adv. Difference Equ., Paper No. 527 (2019) 1-19.
- R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033.
- A. Aghajani, E. Pourhadi, J.J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 16 (2013) 962-977.
- R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017) 460-481.
- R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc. 42 (2019) 1687-1697.
- R. Almeida, A.B. Malinowska, M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 (2018) 336-352.
- R. Almeida, A.B. Malinowska, T. Odzijewicz, Optimal leader-follower control for the fractional opinion formation model, J. Optim. Theory Appl. 182 (2019) 1171-1185.
- R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving ψ-Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019) 1873-1891.
- M. Al-Refai, M. Ali Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal. 74 (2011) 3531-3539.
- C. Chen, M. Bohner, B. Jia, Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications, Fract. Calc. Appl. Anal. 22 (2019) 1307-1320.
- C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique, Axioms 9 (2020) 57. DOI:10.3390/axioms9020057
- H. Fazli, H.G. Sun, S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math. 2020 (2020) 1-10.
- R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, New York, 2014.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2012 (142) (2012) 1-8.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.
- K.D. Kucche, A. Mali, J. Vanterler da C. Sousa, On the nonlinear Ψ-Hilfer fractional differential equations, Comput. Appl. Math. 38 (2019) Art. 73, 1-25.
- K.D. Kucche, A.D. Mali, Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math. 39, Paper No. 31 (2020) 1-33.
- X. Lin, Z. Zhao, Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions, Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 12 (2016) 1-10.
- S. Liu, H. Li, Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method, J. Nonlinear Sci. Appl. 9 (2016) 3310-3318.
- Y. Luchko, J.J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal. 10 (2007) 249-267.
- F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
- M. Metwali, On some qualitative properties of integrable solutions for Cauchy-type problem of fractional order, J. Math. Appl. 40 (2017) 121-134.
- K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- K.B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010) 9-12.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.
- B. Samet, H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative, J. Inequal. Appl. 2018, Paper No. 286 (2018) 1-11.
- W. El-Sayed, M. El-Borai, M. Metwali, N. Shemais, On the existence of continuous solutions of a nonlinear quadratic fractional integral equation, J. Advances Math. 19 (2020) 14-25.
- V.E. Tarasov, Fractional Dynamics, Nonlinear Physical Science, Springer, Heidelberg, 2010.
- V.E. Tarasov (Editor), Handbook of Fractional Calculus with Applications, Vol. 5, Applications in Physics, Part B, De Gruyter, Berlin, 2019.
- G. Wang, R.P. Agarwal, A. Cabada, Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett. 25 (2012) 1019-1024.
- G. Wang, W. Sudsutad, L. Zhang, J. Tariboon, Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type, Adv. Difference Equ., 2016, Paper No. 211 (2016) 1-11.
- G.Wang, J. Qin, L. Zhang, D. Baleanu, Monotone iterative method for a nonlinear fractional conformable p-Laplacian differential system, Math. Meth. Appl. Sci. 2020, 1-11.
- J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 2011 (63) (2011) 1-10.
- J. Wang, X. Li, Eα-Ulam type stability of fractional order ordinary differential equations, J. Appl. Math. Comput. 45 (2014) 449-459.
- J.Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization 63 (2014) 1181-1190.
- N. Xu, W. Liu, Iterative solutions for a coupled system of fractional differential-integral equations with two-point boundary conditions, Appl. Math. Comput. 244 (2014) 903-911.
- W. Yang, Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations, J. Appl. Math. Comput. 59 (2019) 585-596.
- S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal. 71 (2009) 2087-2093.
- Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
- Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, 2016.
About this Article
TITLE:
Extremal Solutions to a Coupled System of Nonlinear Fractional Differential Equations with ψ-Caputo Fractional Derivatives
AUTHORS:
Choukri Derbazi (1)
Zidane Baitiche (2)
Mouffak Benchohra (3)
John R. Graef (4)
AUTHORS AFFILIATIONS:
(1) University of Ghardaia, Laboratory of Mathematics and Applied Sciences, ALGERIA
(2) University of Ghardaia, Laboratory of Mathematics and Applied Sciences, ALGERIA
(3) Djillali Liabes University of Sidi-Bel-Abbes, Laboratory of Mathematics, ALGERIA
(4) University of Tennessee at Chattanooga, Department of Mathematics, USA
JOURNAL:
Journal of Mathematics and Applications
2/44
KEY WORDS AND PHRASES:
ψ-Caputo fractional derivative; Coupled system; Extremal solutions; Monotone iterative technique; Upper and lower solutions.
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/jma/100
DOI:
10.7862/rf.2021.2
URL:
http://dx.doi.org/10.7862/rf.2021.2
RECEIVED:
2020-07-28
ACCEPTED:
2021-01-30
COPYRIGHT:
Oficyna Wydawnicza Politechniki Rzeszowskiej, al. Powstańców Warszawy 12, 35-959 Rzeszów