Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat



Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.


35(1/2016), DOI: 10.7862/re.2016.1

Improvement of microsystem throughput using new cooling system

Adama Samake, Piotr Kocanda, Andrzej Kos

DOI: 10.7862/re.2016.1


This paper presents a new possibility of clock frequency/voltage control in microsystems i.e. high performance processors, exploiting information about cooling efficiency. In this paper, we propose an approach that better exploits the thermal abilities of a chip fixed to cooling system in order to eliminate its energy accumulation. For the purpose of the proposed method, the calculation of so called time shift (TS) is introduced. TS is defined as the duration where the computational system can perform the task at higher frequency without any thermal violation when the chip temperature is close to critical thermal threshold. The analogy between thermal and electrical parameters allows to model RC thermal compact model of structure (chip fixed to the cooling system). Based on this assumption, the authors compute the TS value versus different parameters using RC thermal compact model in Spice environment. The results indicate that TS could fulfil a significant part of die total working time. As an effect the proposed approach may be a means for increasing average clock frequency or voltage supply, consequently enhancing the system’s throughput.

Full text (pdf)


[1] Coskum A. K., Ayala J. L., Atienza D., Rosing T. S. “Modeling and Dynamic Management of 3D Multicore Systems with Lquid Cooling” Very Large Scale Integration (VLSI-SoC), 2009 17th IFIP International Conference pp.35-40 12-140October 2009
[2] Frankiewicz M., Golda A., Kos A. “Investigation of Heat Transfer In Integrated Circuits” Metrology and Measurement Systems, vol.11, No.1, pp.111-120, 2014.
[3] Kim Y. G., Kim M., Kim J. M., Chung S.W. “M-DTM: Migration-based dynamic thermal management for heterogeneous mobile multi-core processors” Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pp 1533-138, March 2015
[4] Kos A., De Mey G “Thermal Modelling and optimization of power microcircuits”, Electrochemical Publications LTD, ISBN 0901150 3603, England 1997.
[5] Legierski J., Wiecek B., De Mey G. “Measurements and simulations of transient characteristics of heat pipes” microelectronics reliability, Vol. 46, issue1, pp.109115, January 2006.
[6] O'Loughlin J., Loree D. “Cooling System Transient Analysis using an Electric Circuit Program Analog” Pulsed Power Conference, 2003. Digest of Technical Papers. PPC-2003. 14th IEEE International, Volume: 2, pp 767 – 770, June 2003.
[7] Pounds D., Bonner III R. W. “High Heat Flux Heat Pipes Embedded in Metal Core Printed Circuit Boards for LED Thermal Management” Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2014 IEEE Intersociety Conference on, pp 267-271, May 2014.
[8] Shaw M.C., Waldrop J. R., Chandrasekaran S., Kagalwala B., Jing X. “Enhanced Thermal Management by Direct Water Spray of High-Voltage, High Power Devices in a Three-phase, 18-hp AC Motor Drive Demonstration” Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, pp. 1007-1014, 2002.
[9] Stavrou K., Trancoso P. “Thermal-Aware Scheduling: A solution for Future Chip Multiprocessors Thermal Problems” Digital System Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on, pp.123 – 126, 2006.
[10] Székely V., Rencz M., P´ahi A., Courtois B. “Thermal Monitoring and Testing of Electronic systems” IEEE Transactions on components and packaging technology, vol.22, No.2, pp.231-237, June 1999.
[11] Tockhorn A., Cornelius C., Saemrow H., Timmermann D. “Modeling Temperature Distribution in Networks-on-Chip using RC-Circuits” Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2010 IEEE 13th International Symposium on, pp. 229 – 232, April 2010.
[12] Tworus K. “Application of Inverse Problems to On-line Temperature Monitoring of Integrated Circuits” 2002.
[13] Zhang P., Ruan L. “Experimental Study On Two-phase Spray Cooling For The Cooling of High-heat-flux Electronic Chip” 2012 Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2012 International Conference on, pp.324-326, March 2012. 

About this Article

Improvement of microsystem throughput using new cooling system

Adama Samake (1)
Piotr Kocanda (2)
Andrzej Kos (3)

(1) AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. Mickiewicza 30, Krakow, Poland
(2) AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. Mickiewicza 30, Krakow, Poland
(3) AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. Mickiewicza 30, Krakow, Poland


clock frequency, voltage supply, heat pipes, temperature sensors, throughput of microprocessor






Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności