Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Budownictwo i Inżynieria Środowiska

Budownictwo i Inżynieria Środowiska
2017.65, DOI: 10.7862/rb.2017.65

A NEW TOLERANCE MODEL OF VIBRATIONS OF THIN MICROPERIODIC CYLINDRICAL SHELLS

Barbara TOMCZYK, Anna LITAWSKA

DOI: 10.7862/rb.2017.65

Abstract

The objects of consideration are thin linearly elastic Kirchhoff-Love-type circular cylindrical shells having a micro-periodic structure in circumferential direction (uniperiodic shells). At the same time the shells have constant structure in axial direction. The aim of this contribution is to formulate and discuss a new non-asymptotic averaged model for the analysis of selected dynamic problems for these shells. This, so-called, general tolerance model is derived by means of a certain extended version of the known tolerance modelling of micro-heterogeneous media. This version is based on a new notion of weakly slowly-varying functions. Contrary to the starting exact shell equations with highly oscillating, non-continuous and periodic coefficients, governing equations of the tolerance model have constant coefficients depending also on a period of inhomogeneity. Hence, the model makes it possible to investigate the effect of a cell size on the global shell dynamics (the length-scale effect). The differences between the general tolerance model proposed here and the corresponding known standard tolerance model derived by means of the more restrictive concept of slowly-varying functions are discussed.

Full text (pdf)

References

[1]  Lewiński T., Telega J.J: Plates, laminates and shells. Asymptotic analysis and homogenization, World Scientific Publishing Company, Singapore 2000.

[2]  Andrianov I.V., Awrejcewicz J., Manevitch L.: Asymptotical mechanics of thin-walled structures, Springer, Berlin 2004.

[3]  Tomczyk B.: Length-scale effect in dynamics and stability of thin periodic cylindrical shells, Bulletin of the Lodz University of Technology, No. 1166, series: Scientific Dissertations, Lodz University of Technology Press, Lodz 2013.

[4]  Woźniak C., Michalak B., Jędrysiak J. (eds.): Thermomechanics of microheterogeneous solida and structures. Tolerance averaging approach, Lodz University of Technology Press, Lodz 2008.

[5]  Woźniak C., et al. (eds.): Mathematical modelling and analysis in continuum mechanics of microstructured media, Silesian Technical University Press, Gliwice 2010.

[6]  Tomczyk B., Woźniak C.: Tolerance models in elastodynamics of certain reinforced thin-walled structures, in: Kołakowski Z., Kowal-Michalska K. (eds.), Statics, dynamics and stability of structural elements and systems, vol. 2, Lodz University of Technology Press, Lodz 2012, pp. 123-153.

[7]  Tomczyk B.: A new combined model of dynamic problems for thin uniperiodic cylindrical shells, in: Kleiber M. et al. (eds.), Advances in mechanics, CRC Press/Balkema (Taylor & Francis Group), London 2016, pp. 581-585.

[8]  Kaliski S.: Vibrations, PWN-Elsevier, Warsaw-Amsterdam 1992.

About this Article

TITLE:
A NEW TOLERANCE MODEL OF VIBRATIONS OF THIN MICROPERIODIC CYLINDRICAL SHELLS

AUTHORS:
Barbara TOMCZYK (1)
Anna LITAWSKA (2)

AUTHORS AFFILIATIONS:
(1) Lodz University of Technology
(2) Lodz University of Technology

JOURNAL:
Budownictwo i Inżynieria Środowiska
2017.65

KEY WORDS AND PHRASES:
uniperiodic shells, mathematical modelling, weakly slowly-varying functions, dynamic problems, length-scale effect

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/biis/830

DOI:
10.7862/rb.2017.65

URL:
http://dx.doi.org/10.7862/rb.2017.65

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu:

Deklaracja dostępności | Polityka prywatności