Budownictwo i Inżynieria Środowiska
2015.207, DOI: 10.7862/rb.2015.207
OPTIMIZATION OF ORGANIC FILLER PROPERTIES BY ITS PHYSICAL TREATMENT
Nadezda STEVULOVA, Ivana SCHWARZOVA, Eva TERPAKOVA, Eva SINGOVSZKA
DOI: 10.7862/rb.2015.207
Abstract
The current trend in the construction industry is the effort to achieve sustainable
development using rapidly renewable materials instead of limited ones. Need
for the development of environmentally friendly products is related to the industrial
interest in the use of natural plant fibres as reinforcement in composites.
The attention is given to hemp fibres as a substitute for synthetic fibres
due to their unique mechanical, thermal insulation, acoustic and antiseptic properties.
Key problem for successful application of hemp hurds as reinforcement into
composites is its high moisture sorption and its heterogeneity what lead to low
cohesion of fibres to the matrix. Optimizing the adhesion of plant fibre to inorganic
matrix is related to the modification of hemp surface. The objective
of this paper is comparison of changes in FTIR spectras caused by combination
of physical and chemical modification of hemp material with unmodified sample.
Modification of hemp hurds was carried out by ultrasonic treatment
and as the cleaning medium were used deionized water and NaOH solution.
References
[1] Santos S.F., Tonoli G.H.D., Mejia J.E.B., Fiorelli J., Savastano Jr. H. Nonconventional
cement-based composites reinforced with vegetable fibers: A review
of strategies to improve durability. Materiales de Construcción Vol. 65, e041, 2015.
[2] Li Z., Wang X., Wang L. Properties of hemp reinforced concrete composites. Composites:
Part A Vol. 37, pp. 497-505, 2006.
[3] Mwaikambo L.Y., Ansell M.P. Hemp fibres reinforced cashew nut shell liquid composites.
Composites science and technology Vol. 63, pp. 1297-1305, 2003.
[4] Bledzki A.K., Gassan J. Composites reinforced with cellulose based fibres. Prog.
Polym. Sci. Vol. 24, pp. 221-274, 1999.
[5] Poletto M.P., Zattera A.J., Santana R.M.C. Structural differences between wood
species: Evidence from chemical composition, FTIR spectroscopy and thermogravimetric
analysis. J. Appl. Polym. Sci. Vol. 126, e336-e343, 2012.
[6] Poletto M., Ornaghi Jr. H.L., Zattera A.J. Native cellulose: Structure, characterization
and thermal properties. Materials Vol. 7, pp. 6105-6119, 2014.
[7] Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural
fibres: 2000-2010. Prog . Polym. Sci. Vol. 37, pp. 1552-1596, 2012.
[8] Gumuskaya E., Usta M., Balaban M. Carbohydrate components and crystalline
structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresource
Technology Vol. 98, pp. 491–497, 2007.
[9] Sreekala M.S., Kumaran M.G., Joseph S., Jacob M. Oil palm fiber reinforced phenol
formaldehyde composites: Influence of fiber surface modifications on the
mechanical performance. Appl. Compos. Mater. Vol. 7, pp. 295–329, 2000.
[10] Cordeiro N., Ornelas M., Ashori A., Sheshmani S., Norouzi H. Investigation
on the surface properties of chemically modified natural fibers using inverse gas
chromatography, Carbohydrate Polymers Vol. 87, pp. 2367–2375, 2012.
[11] Thomsen A.B., Thygesen A., Bohn V., Nielsen K.V., Allesen B., Jorgensen M.S.
Effects of chemical and physical pre-treatment processes on hemp fibers for
reinforcement of composites and for textiles. Ind. Crop. Prod. Vol. 24, pp. 113–118,
2006.
[12] Renouard S., Hano Ch., Doussot J., Blondeau J.P., Lainé E. Characterization of ultrasonic
impact on coir, flax and hemp fibers. Mater. Lett. Vol. 129, pp. 137–141, 2014.
[13] Cigasova J., Stevulova N., Schwarzova I., Junak J. Comparison of water absorption
behavior of biocomposites based on hemp hurds. Pollack Periodica Vol. 9, pp. 51-58,
2014.
[14] Fan M., Dai D., Huang B. Fourier transform infrared spectroscopy for natural
fibers, Fourier Transform - Materials Analysis, InTech. pp. 45–68, 2012.
[15] Putnina A., Kukle S. STEX treated and untreated hemp fiber comparative structural
analysis. Scientific Journal of Riga Technical University Vol. 6, pp. 36–42, 2014.
[16] Carilo F., Colom X., Suňol J.J., Saurina J. Structural FTIR analysis and the thermal
characterization of lyocell and viscose-type fibers. Eur. Polym. J. Vol. 40, pp. 2229-
2234, 2004.
[17] Biagiotti J., Puglia D., Torre L., Kenny J.M. A systematic investigation
on the influence of the chemical treatment of natural fibers on the properties of their
polymer matrix composites. Polymer Composites Vol. 25, pp. 470-479, 2004.
[18] Liu Y. Recent progression Fourier transform infrared (FTIR) spectroscopy study
of compositional, structure and physical attributes of developmental cotton fibers.
Materials Vol. 6, pp. 299-313, 2013.
[19] Kostic M., Pejic B., Scundric P. Quality of chemically modified hemp fibers.
Bioresour. Technol. Vol. 99, pp. 94-99, 2008.
[20] Šutka A., Kukle S., Gravitis J., Grave L. Characterization of cellulose microfibrils
obtained from hemp. Conference Papers in Material Science, 2013.
[21] Fackler K., Stevanic J.S., Ters T., Hinterstoisser B., Schwanninger M., Salmén L.
FT-IR imaging spectroscopy to loclise and characterise simultaneous and selective
white-rot decay within sprude wood cell. Holzforschung Vol. 65, pp. 411-420, 2011.
About this Article
TITLE:
OPTIMIZATION OF ORGANIC FILLER PROPERTIES BY ITS PHYSICAL TREATMENT
AUTHORS:
Nadezda STEVULOVA (1)
Ivana SCHWARZOVA (2)
Eva TERPAKOVA (3)
Eva SINGOVSZKA (4)
AUTHORS AFFILIATIONS:
(1) Technical University of Kosice
(2) Technical University of Kosice
(3) Technical University of Kosice
(4) Technical University of Kosice
JOURNAL:
Budownictwo i Inżynieria Środowiska
2015.207
KEY WORDS AND PHRASES:
FTIR spectroscopy, hemp hurds, surface modification, ultrasound
FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/biis/404
DOI:
10.7862/rb.2015.207
URL:
http://dx.doi.org/10.7862/rb.2015.207
RECEIVED:
2015-06-08
COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow