Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Obowiązek informacyjny wynikający z Ustawy z dnia 16 listopada 2012 r. o zmianie ustawy – Prawo telekomunikacyjne oraz niektórych innych ustaw.

Wyłącz komunikat

 
 

Logowanie

Logowanie za pomocą Centralnej Usługi Uwierzytelniania PRz. Po zakończeniu pracy nie zapomnij zamknąć przeglądarki.

Budownictwo i Inżynieria Środowiska

Budownictwo i Inżynieria Środowiska
2018.010, DOI: 10.7862/rb.2018.10

THE ANALYSIS OF ROAD BUILDING TECHNOLOGY WITH A DATA NORMALIZATION METHOD

Wojciech RADWAŃSKI, Tomasz PYTLOWANY, Izabela SKRZPCZAK
Submitted by: Artur Szalacha

DOI: 10.7862/rb.2018.10

Abstract

The paper presents a data normalization method for processing the data that makes it possible to choice of road building technology. There are two technologies for road construction, a flexible one and a rigid one, and both of them have their advantages and disadvantages. The main advantage of rigid pavement lays on the fact that it doesn’t require higher financial expenditures within 30 years of exploitation (provided that necessary pavement maintenance treatments are carried out). In the case of flexible pavement it is necessary to mill the wear off layer of the road already after 9 years. It leads to the question: which of these technologies should be chosen, which is better? The problem of the choice of technology for road building still remains to be unresolved. The work hereby carries on the analysis concerning a comparison of the technologies for road building; the flexible pavement and the rigid pavement. Based on the analysis carried out using the data normalization method, it was found that the achieved values of synthetic coefficient for flexible and rigid pavements are close to each other, which may indicate that both technologies are comparable within the sectors taken for analyses in relation to accepted technological-technical and usability features.

Full text (pdf)

References

  1. Główny Urząd Statystyczny, https://stat.gov.pl/.
  2. Ustawa z dnia 21 marca 1985 r. o drogach publicznych.
  3. Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 2 marca 1999 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogi publiczne i ich usytuowanie, Dz.U. 1999 nr 43 poz. 430.
  4. Szydło A., Mackiewicz P., Ed. Polski Cement (2005).
  5. Deja J., Techniczno-ekonomiczne aspekty budowy betonowych nawierzchni drogowych w Polsce; Polski drogi, Przegląd Techniki Drogowej i Mostowej, 2003.
  6. Szydło A., Nawierzchnie drogowe z betonu cementowego –teoria, wymiarowanie, realizacja, Wyd. Polski Cement, 2004.
  7. Szydło A., Mackiewicz P., Nawierzchnie betonowe na drogach gminnych. Wyd. Polski Cement, 2005.
  8. Deja J., Nawierzchnie betonowe coraz bardziej popularne w Polsce, Drogi: Lądowe, Powietrzne, Wodne, 2009.
  9. Deja J, Kijowski P., Drogi betonowe – doświadczenia z budowy i eksploatacji cz. II, https://edroga.pl/drogi-i-mosty/drogi-betonowe-doswiadczenia-z-budowy-i-eksploatacji-cz-ii-22062301/all-pages.
  10. Gruszczyński M., Beton wałowany – szansą na tanie i trwałe drogi, Przegląd Budowlany 1/2016.
  11. Woyciechowski P,. Harat K., Nawierzchnia drogowa z betonu wałowanego, Budownictwo Technologia Architektura, 2012.
  12. Senderski M., Beton wałowany– idea i zastosowanie, Inżynier Budownictwa, 4/2015.
  13. Frost Durability of Roller Compacted Pavements, Canada, Portland Cement Association, 2004.
  14. Roller Compacted Concrete Pavements Design and Construction, US Army Corps of Engineers, Washington DC, 2000.
  15. Production of Roller Compacted Concrete, Portland Cement Association, 2008.
  16. Compaction of Roller-Compacted Concrete, Miller R., 2000.
  17. Guide Specification for Construction of Roller-Compacted Concrete Pavements, American Concrete Institute, Farmington Hills, 2004.
  18. Plantmix Asphalt Industry of Kentucky (PAIKY).
  19. Milachowski Ch., Stengel T., Gehlen Ch., EUPAVE, 2011, https://www.eupave.eu/wp-content/uploads/eupave_life_cycle_assessment.pdf.
  20. Production of Roller Compacted Concrete, Portland Cement Association, 2008.
  21. Miller R., Compaction of Roller-Compacted Concrete, ACI 309.5R-00 became effective February 23, American Concrete Institute, 2000.
  22. American Concrete Institute, Farmington Hills, 2004.
  23. General Technical Specifications, GDDKiA, 2013.
  24. Czarnecki L, Woyciechowski P., Adamczewski G., Risk of concrete carbonation with mineral industrial by-products, KSCE Journal of Civil Engineering, 22(2), 2018,
    pp. 755–764.
  25. Czarnecki L., Woyciechowski P., Modelling of concrete carbonation; is it a process unlimited in time and restricted in space?, ACI Materials Journal, 109(3), 2012, pp. 275–282.
  26. M. Dobiszewska, Waste materials used in making mortar and concrete, Journal of Materials Education, 39 (5–6), 2017, pp. 133–156.
  27. Beycioglu A., Gultekin A., Aruntas H., Huseyin Y. et al., Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model, Computers and concrete, 20(2), 2017, pp. 247–255.
  28. Konkol J., Prokopski G., The use of fractal geometry for the assessment of the diversification of macro-pores in concrete, IMAGE Analysis & Stereology, 30(2), 2011, pp. 89–100.
  29. Manko Z., Jakiel P., Assessment of aggressive environment effect on changes in properties of weathering resistant steel 12HNNb in railroad bridges, Nordic Steel Construction Conference '95, Proceedings, Vol. 1 and 2, 1995, pp. 445–452.
  30. Śleczka L., Component-based modelling of beam-to-column joints subjected to variable actions, Recent progress in steel and composite structures, pp. 457–462 ( 2016).
  31. Sztubecka M., Bujarkiewicz A., Sztubecki J., Optimization of measurement points choice in preparation of green areas acoustic map, Civil and Environmental Engineering Reports, 23(4), pp. 137–144 (2016).
  32. Optimum Flexible Pavement Life-Cycle Analysis Model. Available from: https://www.researchgate.net/publication/245306205_Optimum_Flexible_Pavement_Life-Cycle_Analysis_Model (accessed May 25 2018).
  33. http://www.fdot.gov/design/training/designexpo/2012/Presentations/UwaibiEmmanuel-PavementTypeSelectionProcess%20.pdf(accessed May 25 2018.
  34. Skrzypczak I., Radwański W., Pytlowany T., Durability vs technical – the usage properties of road pavements, materiały po recenzji w druku, Inrafeko 2018.
  35. https://www.researchgate.net/figure/Pavement-courses-both-flexible-and-rigid-pavement_fig1_319620565.
  36. Skrzypczak I., Radwański W., Pytlowany T., Choice of road building technology – statistic analyses with the use of the Hellwig method, materiały po recenzji w druku, Inrafeko 2018.
  37. Pluta W., Wielowymiarowa analiza porównawcza w modelowaniu ekonometrycznym, PWN, (1986).
  38. Len P., Oleniacz G., Skrzypczak I. et al., The Hellwig's and zero notarization methods in creating a ranking of the urgency of land consolidation and land exchange work SGEM 2016, Vol. II Book Series: International Multidisciplinary Scientific, GeoConference-SGEM, pp. 617–624 (2016).

About this Article

TITLE:
THE ANALYSIS OF ROAD BUILDING TECHNOLOGY WITH A DATA NORMALIZATION METHOD

AUTHORS:
Wojciech RADWAŃSKI (1)
Tomasz PYTLOWANY (2)
Izabela SKRZPCZAK (3)

AUTHORS AFFILIATIONS:
(1) Państwowa Wyższa Szkoła Zawodowa w Krośnie
(2) Państwowa Wyższa Szkoła Zawodowa w Krośnie
(3) Politechnika Rzeszowska

SUBMITTED BY:
Artur Szalacha

JOURNAL:
Budownictwo i Inżynieria Środowiska
2018.010

KEY WORDS AND PHRASES:
road, pavement, choice, data normalization method

FULL TEXT:
http://doi.prz.edu.pl/pl/pdf/biis/1021

DOI:
10.7862/rb.2018.10

URL:
http://dx.doi.org/10.7862/rb.2018.10

COPYRIGHT:
Publishing House of Rzeszow University of Technology Powstańców Warszawy 12, 35-959 Rzeszow

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza; al. Powstańców Warszawy 12, 35-959 Rzeszów
tel.: +48 17 865 11 00, fax.: +48 17 854 12 60
Administrator serwisu: