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AN EXAMPLE OF OPTIMIZING THE SIZE OF THE
QUEUE IN THE NONDETERMINISTIC LOGISTIC
SYSTEMS

The work presents the example of nondeterministic model of the operating system and
optimizing the size of the queue in such a system. As far as modeling is concerned, Markov
models [3][4][13][16][17] have been used. The work also presents a method of determining
crucial work parameters of the nondeterministic system.

The first and the second chapter contain some general information connected with
modeling, as well as equations from which nondeterministic models of the systems with a
countable number of conditions have been constructed. They are also shown the distinctions
of discrete models and the ones continuing in time. The third chapter provides the
information on geometric distributions. The distribution itself is the model element being
presented in the other part of the work. The fourth chapter presents the definitions of
essential operating parameters and their implementation. It is particularly important to
highlight two major parameters: the average time for operating one notification, as well as
the average time of notification in a system. The theorem of the notification time in a
system has also been proved. The fifth chapter deals with the sample model of
nondeterministic operating system. In such a system operating is shown in a pipelining way.
Between two operating nodes in a system there is a queue, the size of which determines the
efficiency of a system. The sixth chapter presents the optimal size of a queue for a
previously mentioned model. For this purpose the relationship based on the cost of
manufacturing system, depending on the size of the queue and the price of a system in its
efficiency was adopted.

Keywords: optimizing, size of the queue, nondeterministic logistic systems, Markov
models.

1. INTRODUCTION

As far as modeling and system optimization in general technical problems are
concerned, three different issues can be distinguished:
1) modeling
2) determining the parameters of the system
3) optimization

The aim of modeling is to provide the actual system in mathematical form (systems of
linear equations, differential equations, graphs, etc.)
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Models can be used to simulate the behavior of the system in unusual conditions, as
conducting experiments on real systems sometimes is not possible or simply too
expensive. In the queuing theory models are generally presented in the form of linear
equations of ordinary differential equations (continuous models) or linear difference
equations (discrete models). In the given conditions these models are simplified to the
linear equations of the systems. For the queuing theory, it is characteristic that in the
systems of modeling probabilities of system’s existence in provided states are their
variables.

The aim of determining the parameters of the system is to obtain information about the
system. Sometimes some interesting parameters are included in the model itself. However,
they are often hidden and it is necessary to determine them.

In the queuing theory such parameters are, for example: the average time of the node
engaging, the average number of notifications in the queues or the average time of the
notification’s staying in a system.

Optimization aims to find the best solution (control or the structure) in the set of many
available solutions.

To talk about the best control or structure it is necessary to define the function of
objective. The objective function is the measure of the quality control or the structure of
the system. Its arguments are the parameters of the system which were mentioned above.
The objective function is the balance of profit and loss connected with the decision about
a control or a structure of a system. The objective function very often has an economic
interpretation.

In the queuing theory the control can be understood as operating timetable, priorities
of transitions, probabilities of transitions or the queues regulations, etc.). As to the
structure, it consists of the number of operating nodes, the number of seats in the queue,
etc.

Such division is not the only one and in special cases may be different.

The work presents the examples of processes model in multiphase systems of logistics
operation. Incoming notifications of these systems are the processed objects. The
operating nodes can be units and the systems of loading, packing, selection, etc.

2. THE EQUATIONS DESCRIBING THE SYSTEM

2.1 The discrete case (Markov chain)

Fig. 1. A state in a discreet system
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Let’s analyze the graph shown in figure 1. Probability po- is the total probability of output
from the state 0.

For the graph following equations occur.

The probability of state 0 in the next step, A t =1 (total probability):

m&+9=ﬂ—p@pd@+§mmmW) &
0
mW+D=pJM—m$AM+2pmMM
The change of probability in one ste%:
o (K +1) = Py (K) = —Pge Py (K) + 3 Pio P, (K) @

i=1
For the state provided the following equations occur.

Po(k+D)—po(K)=0,  p(k)=p, i=01..n 3)
The proposition of a total probability (received from the equation (1) after consulting the
equation (3)):

Po =1 — Pg) P + z Pio Pi (4)

i=1

The probability of output equals the probability of input (received from (2) after
consulting the equation (3)):

Po-Po =D Pio Py )

i=1
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2.2 The continuous case (Markov process)

1-(Ag+...+ An) At

Fig. 2. A state in a continuous system

Let’s analyze the graph shown in figure 2. In the state 0 the operation takes place in m
nodes which are subjected to exponential distributions with coefficients A4,..., Ay
For the graph presented, the following equations occur.

The probability of state 0 at the next moment (total probability):

po(t+At)=(1- Z A At) py () + Z L ALp; (1) (6)
i=1 i=1
)
t+At) — p,(t o 4
i WA NOES NG
t i=1 i=1
)
The derivative of probability (At—0):
Py (t) = _Z Aipo(t) + Z:ui p; (t) (7)
i=1 i=1

For the state provided the following equations occur.

po(t) =0, p,(t) = p;, i=01..,n (8)
The proposition of a total probability (received from the equation (6) after consulting
At =1 and the equation (8)):

Po :(1_Zﬂ’i)p0+z#i Pi )
i1 i1

The probability of output equals the probability of input (received from the equation (7)
after consulting the equation (8)):

D APy =D 1, (10)
i=1 i=1
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The equations (1) (6), (2) (7), (4) (9), (5) (10) are their countertypes.
The equations (7) are called Chapman -Kolmogorov equations.

3. GEOMETRIC DISTRIBUTION

In discrete models the operating time will be modeled by discrete distributions.
Let’s assume that F(t) = p(z <t) =1- p(z >t) =1-B(t)
The discrete distribution has the following form:

1 0<t<t,
i
B(t)=41->p; t;<t<t,,, j=12..k-1 (11)
i=1
0 t, <t
Density function:
k
ft)=> p;st-t) (12)
i=1

where: t; <t; for i<j, 1,j=12,.k.
The probability of the appearance of notification in time t; is p;.

k
There is also: Z p, =1
i=1
If p; =1 we get determined distribution.
A special case of a discrete distribution is a geometric distribution for which:

f()=@A-m)Y 275G -t) (13)
B (t) =x' iT<t<(@i+DT, i=01.. (14)

where: T  geometric distribution period,

7 geometric distribution parameter.
For the geometric distribution when we consider the specific moment in which the
occurrence is to appear (time multiple T ) it will appear with the probability 1-7 and will
not appear with the probability 7. Such probability does not depend on whether a previous
notification had appeared or not.
The mean value and the variance of geometric distribution are:

!

LB (15)
2

S (16)
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If we approximate the distribuer of geometric distribution B, (t) exponential
distribution (for the exponential distribution B(t) =e™*' ) we get

e M=z = A= —? a7
In borderline case where 7—1 and T—0 so that A=const geometric distribution aims at
exponential distribution with parameter A.
Geometric distribution is a discrete equivalent of the exponential distribution. For the
geometric distribution just like for the exponential one, the distribution of the time to the
nearest appearance of occurrence is not dependent on the waiting time (it is without the
memory), because

P> (k+1)T /7> kry= P> (DT AT> KT}
P{r > kT}
k+r
PG (enTY A e -

P{r >kT} "

If we have two geometrical streams with two identical periods and at least one
common notification point, so:
- the probability that in the moment kT there will not happen any of them

P(z > kT) = P(zp> kKT)P(z,> kT) = (7,7,)" (29)

where: k=0,1,2,...
- the probability that they will happen at the same time is

Fa1 (KT) Frp (KT) = A7) L —75) ()< (20)
where: k=1,2,3,...
what may be different from 0 (for the exponential distributions = 0).

4. THE OPERATING PARAMETERS

Before presenting exemplary models of operating systems, the operating parameters
which the researcher may find interesting will be discussed.

First of all, these are the parameters which characterize the efficiency of a system.
They include the average time being operated by a single notification system S (which
means the average time interval between the moments of output from the system of two
other notifications). More information can be found in the function of distribution of time
intervals between the moments of the output from the system of two other notifications.
However, it is not always possible to determine it by analysis. The average length of time
of the presence of notification in a system R is also a very important parameter. The time
of notification’s presence in a system is counted from the moment of notification’s input
to the system till the moment of finishing operating of such notification by the last phase.

The length of staying and operating one notification in a system may be identical
only in trivial case when the operation is not happening at the same time (when there is no
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more than one notification in a system at any time). Such an operating variant occurs in
simple device.

The structure of the logistics system with the stream of flowing goods may
consist of several operating phases. In such a system the next notification does not have to
wait until the whole system will be released and can be operated as soon as the first phase
of operation was released (so called pipelining).

Let’s analyze the system consisting of k operating phases shown in figure 3.

Fig. 3. The system consisting of k operating phases

Let’s assume that the average operating time in phase i (i =1,...,k) is m;.

For such a system with pipelined (P) and non pipelined (N) operating, the
following relationships occur:

where: S —the average operating time of one notification
R — the average time of notification’s presence in a system

and
S, = max m, (22)
i=1,2,...k
Rp =t i tueis=Rn AR (23)

where: AR the total average time of notification spent in queues

The parameter Sp is strictly associated with max m; which is the average time of the
slowest operating phase (so called bottleneck of the system).

Both Sp and Rp are dependent on the structure of the system.

In the transition to pipelining operating S decreases because the time of unused
appliances decreases as well because the notification is waiting in queues. These two
operating parameters allow to expose the reserves of the system’s efficiency. So:

AS =S —maxm; (24)

shows the possible time of reserve that is lost by inappropriate operating rule at the given
stream of notifications.
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The time of notification spent in queues determines a reserve by which we can
reduce the time of notification spent in a system. This reserve is:

K
AR=R->'m, (25)
i=1
Another important parameter is the time r; which the node i does not use in the operating
process. The node cannot use the whole time on operating for two reasons. Firstly, it does
not operate the notifications as there are no notifications on its inputs (the node is free).
Secondly, it does not operate notifications as there is no place in the queue which accepts
notifications being operated by this node (the node is blocked).

The components of time lost by the nodes having the maximum value m;, are
particularly important as their decrease gives the possibility of decreasing the average
operating time of one notification. This time can be also decreased by decreasing the
maximum value m;. In each particular case determining the best way of decreasing S
depends on the costs.

Other important parameter of system’s operating is the probability g, that at any
moment of time in a system there are v notifications. The parameter g, characterizes so
called operating depth.

The characteristic of the efficiency of the queue in a system may be the distribution of
a random variable defining the level of saturation of the queue at any point in time.

The conditions of stationarity in the system as well as the impact of engaged rate on
the characteristic of the processes within a system are also very important.

Let’s discuss the possibilities of determining the operating parameters on the
assumption that it is possible to obtain in any way the probability p; that the system in a
stationary state there is at any moment of time in the state i, where i takes the value of the
numerable set of possible states.

To determine the average operating time S of one notification, let’s choose an
operating phase through which all the notifications go once only. In fact, in the queuing
systems in which pipelining operation takes place, such phases are always present. Let m”
be the average operating time of notification in this phase. Let D be the set of states in
which the system performs the operating notification in the selected phase. The value

Po= Z Pi (26)
ieD
shows the probability that the operation takes place in the selected phase.

For sufficiently large range of the time T with the probability close to 1 the
average working time of the selected phase is:

T=p,T (27)
Then the average number of notifications that have been handled by the system at this

time is equal to:

N’z Pol (28)
m

and the average operating time of one notification by the system is defined by:
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S = T* = m_ (29)
N pp

the distribution of operating depth is:

g‘/: z pi V=1,2,3,.-- (30)
ieD,

where: D, set of states which are in the notification system v
Similarly, there are the distributions of the size of queue’s saturation
The average number of notifications in a system

V= ivgv (31)
v=l

The average time R of notifications’ presence in a system can be defined with the usage of
operating depth.

R=vS (32)
Now we will conduct the proof of equality (5.12).

THE PROOF:

There will be given an operating system with one input and one output for which there
is a stationary state. Let’s consider sufficiently large range of time T. Let M be the total
average time of all notifications’ presence in a system in time T. This is an analogy of
energy, in our case dedicated to operation by the system. M can be determined in two
ways.

M=vT (33)

M =RT/S (34)

T /S is the average number of notifications being operated by the system in time T.

After comparing the last two relationships we get the equation (5.12).

It is worth noticing that any additional assumptions are not needed (e.g. the rules of the
queues, the distribution of the input stream, the distributions of operating time, the
priorities of entries inside the system). It is even acceptable that some notifications after
their input into the system would never leave it (there can be finitely many such
notifications due to the assumptions of the existence of a stationary state).

Parameter such as the function of distribution of length of time operating one
notification in a system can be found by examining the transitional processes in SK.

5. THE MODEL AND ITS ANALYSIS

Let’s consider two-phase operating system. The first node generates the notifications.
The generation time is constant and equal 2. The second node operates the notifications.
The operating time is random and is subjected to geometric distribution of the period T=1
and the parameter = After the operation in the second node, the notification leaves the
system. Between the phases there is a queue with a capacity of n notifications.

A node of the first phase may represent the generating device. A node of the second
phase may represent a device selecting generated objects.
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The states of our system will be denoted by threesome <jt;t,>.

The vector time component of such a system contains two parameters: t; the time
remaining until the end of operating in the node of the first phase, t, the time remaining
until the possible end in the node of the second phase. The component t; may have three
values: 0 when the first node is blocked, 1 and 2 when it is working. The component t,
may have two values: 0 when the second node is free, and 1 when it is working.

Combinational component of the vector’s state has one component j which is the
number of notifications in the queue, j=0,1,...,n.

The elements of matrix transitional probabilities will be determined by considering the
possible transitions from the state n01 in which the first node is blocked, i.e. t;=0. From
this state with the probability 1-7 the system goes to the state n21, when the second node
finished notification’s operation and took from the queue the next notification to operate,
and the first blocked node passed the notification to the vacant place in the queue and
started generating the next notification. With the probability 7 the second node will
continue to operate the notification and the system will remain in the same state. From the
state n21 the system may go to two states n-111 with the probability 1-7 and to n11 with
the probability 7. Analogical transitions are possible from states i21, i=1,2,...,n so we
have

. o1
pli2l - i —11] 7Z} )

pli2l — itl] = 7

where: i=1,2,...,n

From the state n11 the system with the probability 7 returns to the state n01 (the
second node did not finish notification’s operation and the first was blocked because there
was no place in the queue), with the probability 1-7 the system goes to state n21 (the
nodes finished operating at the same time and started to operate other notifications, there
was no change in the queue’s).

For the state i11, i=0,1,...,n-1 the probability of transitions equals

plill > iA] =1-7
plill —>i+12] =7
From the state 021 the system with the probability 7 goes to the state 011, and
with the probability 1-to the state 010 (the second node is free and is waiting for
notification).

Let’s notice that the state 020 is not achievable from any state.
The graph of passes of the analyzed system is shown in figure 4.

(36)
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Fig. 4. The graph of a two-phase system. The first phase generates the notifications every two units
of time. The second phase is subjected to the geometric distribution
The layout of equations defining the stationary probabilities of the analyzed system is:

Poo= 1= 7) Pgyy
Po2r= p010+(l—7r) Po11
Pir=7 Py +tA=7) Py, 1=12,.,n-1

Poot=7 Pyt =7) Pyt (A= 7) P oy (37)
Pi= L= 7) Pigpyt7 Py, 1=01..,n-1
Pni1= 7 Pna

Pno1i= 7 Proat? Py

Assuming that z=1 we may predict:

P=Poo» @=7xll-7) (38)
The solution of the layout is as following:
2i
0] .
Pixn= p i=01..,n
1-7
2i+1
Piy=—"0P i=01..n-1 (39)
1-7
2n+1 2n+2
Pu=0"" P Pry=@""" P
After taking into account the condition of normalization 3. p;; =1 from (6.26) we get
1 2n )
p — [1+ I za)l +a)2n+l+a)2n+2]—l (40)
- i=0
which results in
B 1-27 1
b= 21-7) -2 @ g

1 (41)

:4n+5

p



170 R. Szostek, D. Mazur

The probability that the system is working is 1-p. Because m,=T/(1-7 )= 1/(1-x) the
average time spent by the system to operate one notification is:

m, 21-x)-0"?

= - 2n+2 o=l
S 4n+5 =1
2n+2

6. THE SYSTEM’S OPTIMIZATION

The example of the system’s optimization discussed in chapter 5 has been presented
below. We consider the special case when o =1 (7=1/2).

Let’s assume that the producer of the system wants to make a decision on how many
seats should the queue between the operating phases contain. For this purpose, we assume
that we have the following knowledge:

- the dependence indicating the manufacturing costs of the system in the function of
the number of seats in the queue

1 1
K(n)=—n+= (43)
300 3
- the dependence indicating the property of the market which is the price of the
system in the function of system’s efficiency and in the function of number of seats in a

queue

1 2n+2
Cln)=== 44
(" S 4n+5 44
As the function of aim we will assume the value of the profit which is
Z(n) =C(n)—-K(n) (45)
So we have
Z(n):zmz—in—1 (46)
4n+5 300 3
We will treat n as a continuous variable (n>0). The function Z(n) is of class C".
Z'(n) =2 = )

- =0
(4n+5)* 300
The solution of the above equation shows that the function Z(n) has a positive maximum
for n=4,87. Since we are only interested in the total n so n=4 or n=5.
Z(4)=0,1295
Z(5)=0,1300
which means that optimal n=5.

7. CONCLUSION

The theory of queues can be successfully applied to the modeling of logistics systems
with pipelining. The tools used in the theory allow one to model and optimize complex
systems in an effective way. The work presents the examples of such an analysis.



An example of optimizing the size of the queue ... 171

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]

[7]

(8]

4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Brozyna J., Chudy-Laskowska K., Wierzbinska M.: ,,Short-term forecast of passenger air
transport. Rzeszow International Airport in Jasionka - empirical study”, Zeszyty Naukowe
Politechniki Rzeszowskie Nr 285, Zarzadzanie i Marketing z. 19 (4/2012) 2012

Brozyna J.: Trzy modele przelotow termicznych w ujeciu symulacyjnym na tle schematu
McCready. Oficyna Wydawnicza Politechniki Koszalinskiej, 2007r

Filipowicz B.: Modelowanie i analiza sieci kolejkowych. Krakow, Wydawnictwa AGH, 1997
Filipowicz B.: Modelowanie i optymalizacja systeméw kolejkowych cz.ll. Systemy
niemarkowskie. Krakow, Wyd. FHU Poldex 2000

Jamroz D.: Multidimensional labyrinth - multidimensional virtual reality. In: Cyran K,
Kozielski S., Peters J., Stanczyk U., Wakulicz-Deja A. (eds.), Man-Machine, Interactions,
AISC, Heidelberg, Springer-Verlag, pp. 445-450, 2009

Jamréz D., Niedoba T.: Application of Observational Tunnels Method to Select Set of
Features Sufficient to Identify a Type of Coal, Physicochemical Problems of Mineral
Processing, vol 50(1), pp. 185-202, 2014

Mentel G.: Energy market in the context of long-term forecasts, Zeszyty Naukowe
Politechniki Rzeszowskiej, Nr 285, Zarzadzanie i Marketing z. 19 (4/2012), Rzeszow 2012
Mentel G.: Modeling Gas Prices in Poland with an Application of the Vector Autoregression
Method (VAR), Folia Oeconomica Stetinensia Volume 12, Szczecin 2012

Pilch Z., Bieniek T.: Pneumatic muscle - measurement results and simulation models. Pr. Inst.
Elektrot. 2009 z. 240, s. 179-193

Pisula T.. Ocena efektywnosci funkcjonowania pewnego systemu cybernetyczno-
ekonomicznego typu ,, transport-zapasy”, Badania Operacyjne i Decyzje, nr 1 (2003), s.59-77
Pisula T., O wplywie pewnych uwarunkowan ekonomiczno - organizacyjnych na wielkosé strat
zwigzanych z gospodarowaniem zasobami, [W:] Przedsigbiorczos¢ w Procesie Przemian
Strukturalnych w Europie Srodkowo — Wschodniej, Wydawnictwo Politechniki Rzeszowskie;j,
Rzeszow 1999, 5.493-512

Szczygiel M., Trawinski T., Pilch Z., Kluszczynski K.: Modelowanie stanowiska badawczego
dla przetwornikéw elektromechanicznych o dwodch stopniach swobody ruchu. Przeglad
Elektrotechniczny, 2009 R. 85 nr 12, s. 154-157

Szostek K.: ,,Rozpoznawanie mowy metodami niejawnych modeli Markowa HMM?”, rozprawa
doktorska, AGH Krakow, Wydziat Elektrotechniki, Automatyki, Informatyki i Elektroniki,
26/04/2007

Szostek K.: ,, Optymalizacja modeli HMM oraz ich zastosowanie w rozpoznawaniu mowy”.
Krakow, Elektrotechnika i Elektronika Tom 24, zeszyt 2/2005, s. 172-182. Wydawnictwa
AGH, ISDN 1640-7202

Szostek K.: ,, Optymalizacja przydziatu zaméwien klientow do stanowisk pobierania towaréw
z wykorzystaniem algorytméw ILS oraz TS” Elektrotechnika i Elektronika tom 22, zeszyt
2/2003, s. 95-105, Wydawnictwa AGH, ISDN 1640-7202

Szostek R.: Zastosowanie teorii kolejek do modelowania procesow zachodzgcych
W urzgdzeniach liczqgcych. Kwartalnik AGH Elektrotechnika i Elektronika, t. 18, z. 3, Krakow
1999, 81-88

Szostek R.: Systemy kolejkowe z niewykladniczym wezlem obstugi, Potrocznik AGH
Elektrotechnika i Elektronika, t. 19, z. 1, Krakow 2000, pp. 1-8

PRZYKEAD OPTYMALIZACJI WIELKOSCI KOLEJKI
W NIEDETERMINISTYCZNYM SYSTEMACH LOGISTYCZNYCH

W pracy zostat przedstawiony przyktad niedeterministycznego modelu systemu obstugi

oraz optymalizacji wielkosci kolejki w takim systemie. Do modelowania wykorzystano
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modele Markowa [3][4][13][16][17]. W pracy przedstawiony zostal takze sposob
wyznaczania istotnych parametrow pracy systemu niedeterministycznego.

W pierwszym oraz drugim rozdziale pracy przedstawione zostaty ogolne informacje na
temat modelowania oraz przedstawione zostaly rownania, z ktorych skonstruowane sa
niedeterministyczne modele systeméw z przeliczalng liczba stanow. Rozréznié tu nalezy
modele dyskretne oraz ciagle w czasie. W rozdziale trzecim przedstawione zostaly
informacje na temat rozklady geometrycznego. Rozklad ten jest elementem modelu
przedstawionego w dalszej czesci pracy. W rozdziale czwartym przedstawione zostaty
definicje istotnych parametrow obstugi oraz wyprowadzone zostaly te parametry.
Szczegoblnie istotne sg dwa parametry: $redni czas obshugi jednego zgloszenia oraz $redni
czas przebywania zgloszenia w systemie. Udowodnione zostato takze twierdzenie, na temat
czasu przebywania zgloszen w systemie. W rozdziale piatym przedstawiony zostal model
przyktadowego niedeterministycznego systemu obstugi. W systemie tym obsluga odbywa
si¢ w sposob potokowy. W systemie pomiedzy dwoma weztami obstugi znajduje sig
kolejka, od ktorej rozmiaru zalezy jego sprawnos$¢. W rozdziale szostym dla
przedstawionego wczesniej modelu wyznaczony zostat optymalny rozmiar kolejki. W tym
celu przyjete zostaly zaleznosci okreslajace koszty wytworzenia systemu w zalezno$ci od
wielko$ci kolejki oraz zalezno$¢ okreslajaca cene systemu w funkcji sprawnosci.

Stowa kluczowe: optymalizacja, wielko$¢ kolejki, niedeterministyczne systemy
logistyczne, modele Markowa

DOI: 10.7862/rz.2013.mmr.36

Tekst ztozono w redakcji: wrzesien 2013
Przyj¢to do druku: wrzesien 2013



