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DETERMINING HEAT TRANSFER 
CORRELATIONS FOR TRANSITION AND 
TURBULENT FLOW IN DUCTS 

The objective of the paper is to develop correlations for the Nusselt number Nu in 
terms of the friction factor ξ (Re) and also Reynolds number Re and Prandtl num-
ber Re, which is valid for transitional and fully developed turbulent flow. After 
solving the equations of conservation of momentum and the energy for turbulent 
flow in a circular tube subject to a uniform heat flux, the Nusselt number values 
were calculated for different values of Reynolds and Prandtl numbers. Then, the 
form of the correlation Nu = f (Re, Pr) was selected which approximates the re-
sults obtained in the following ranges of Reynolds and Prandtl numbers: 2300 ≤ 
Re ≤ 1000000, 0.1 ≤ Pr ≤ 1000. The form of the correlation was selected in such  
a way that for the Reynolds number equals to Re=2300, i.e. at the point of transi-
tion from laminar to transitional flow the Nusselt number should change conti-
nuously. Unknown coefficients  x1, …, xn  appearing in the heat transfer correla-
tion expressing the Nusselt number as a function of the Reynolds number and 
Prandtl number were determined by the method of least squares. To determine the 
values of the coefficients at which the sum of the difference squares is a mini-
mum, the Levenberg-Marquardt method is used 

Keywords: tube flow, heat transfer, coefficient of friction, correlation for the 
Nusselt number, transition and turbulent flow 

1. Introduction  

There are only a few heat transfer correlations for internal flows in pipes 
and ducts which are valid in transition and turbulent regions [3, 5-8, 12]. Based 
on the suggestion of Hausen, Gnielinski [5] superseded the Reynolds number 
Re by the term (Re –1000) in the heat transfer correlation to include the transi-
tional region. A drawback of the Gnielinski correlation was the lack of the Nus-
selt number continuity for the Reynolds number Re = 2300, i.e. at the point at 
which the flow evolves from the laminar to transition region. In the later works 
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[6-7] Gnielinski developed a new calculation method in the transitional flow 
based on the linear interpolation of the Nusselt number between Re = 2300 and 
Re = 10000 taking into account the finite length of the tube. In this way, conti-
nuity of the Nusselt number was assured in the range from Re = 0 to Re = 1·107. 
It turned out, however, that in the range of Reynolds numbers from Re = 4000 
to 20000 values of Nusselt numbers calculated using the interpolation formula 
proposed by Gnielinski are too large. For this reason, he changed his formula 
[8]. A linear interpolation between the Nusselt numbers at Re = 2300 and Re = 
4000, was proposed. The Nusselt number for Re = 2300 is calculated from well-
known correlations for the laminar flow and for Re = 4000 the Nusselt number 
is determined using the modified Pietukhov correlation in which Re was re-
placed by (Re-1000). The disadvantage of all interpolation functions proposed 
by Gnielinski [6-8] is the need to specify the value of the Reynolds number for 
the end of the interval, in which the flow is transitional. Experimental studies 
show that in the range of Reynolds numbers: 2300 < Re < 20000 the Nusselt 
numbers are much smaller than those calculated from the correlations used for 
turbulent flow. Tam and Ghajar [12] proposed correlations for the turbulent, 
laminar and the transition regions for three different tube inlet configurations: 
reentrant, square-edged and bell-mouth. They found that transition from laminar 
to turbulent flow occurred at Reynolds number of 2900 to 3500 for the re-
entrant, 3100 to 3700 for the squared-edge, and at 5100 to 6100 for the bell-
mouth. They developed correlations to predict the critical Reynolds numbers for 
the different inlets and correlations to predict heat transfer in the transition re-
gion of flow. All correlations are approximate and may possess errors as much 
as 25 percent or larger. In this paper, a new correlation for the Nusselt number 
Nu in terms of the friction factor ξ, Reynolds number Re and Prandtl number 
Re, which is valid for transitional and fully developed turbulent flow. 

2. Mathematical formulation of the problem 

At first, the Nusselt number as a function of Reynolds and Prandtl numbers 
will be calculated based on the solution of momentum and energy conservation 
equations for turbulent flow for Re > 3000. The turbulent velocity profile  is 
computed by solving the momentum conservation equation 

( )1 xd wd d p
r

r d r d r d xτρ ν ε 
+ = 

 
 (1) 

where: p – pressure, r – radius, x – cartesian coordinate, xw - time averaged 
velocity, ν – kinematic viscosity, ετ – eddy diffusivity for momentum transfer 
(turbulent kinematic viscosity). 

xw
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Equation (1) is subject to the following boundary conditions 

0 0, 0
w

x
r x r r

dw
w

dr = == =  . (2) 

Taking into account that the shear stress τ is defined as 

( ) ( ) 1x x xd w d w d w

d r d r d r
τ

τ τ
ετ µ ρ ε ρ ν ε µ
ν

 = − + = − + = − + 
   

(3) 

Eq. (1) can be rewritten in the form 

( ) 21 w

w

d
r

r d r r

ττ =  (4) 

Integration of Eq. (5) with the boundary condition 

wr r wτ τ= =  (5) 

gives 

w
w

r

r
τ τ=  (6) 

Substitution of Eq. (6) into Eq. (3) leads to  

1

1

x
w

w

d w r

d r r τ
τ

εµ
ν

= −
 + 
 

 (7) 

The solution to Eq. (7) should satisfy the boundary condition (2).The shear 
stress at the wall can be expressed as 

2

8
m

w
wρτ ξ=  (8) 

Where the mean velocity wm is given by 



106 D. Taler, J. Taler 
 

2
0

2 wr

m x
w

w w r dr
r

= ∫  (9) 

The friction factor ξ can be expressed in the form 

1

1 1

0

8

Re 1R

R dR
R dR

τ
ξ ε

ν

−
  
  

=   
  + 
   

∫ ∫  (10) 

To determine a velocity distribution ( )xw r  and friction coefficient ξ the 

eddy diffusivity for momentum transfer ετ will be calculated using Reichardt’s 
[9] empirical equations, which so far are most commonly used because of the 
high accuracy of the measurement data 

tanh , 50τε κ
ν

+
+ + +

+

  
= − ≤  

   
n

n

y
y y y

y
 (11) 

( ) 21
1 , 50

4 2
τε κ

ν
+ + = + + > 

 
y R R y  (12) 

where: R = r/rw , κ = 0.4 and 11ny+ = . 
The dimensionless distance from the tube wall is defined as 

( )/ /τ τ ρ τ ρ
ν ν ν

+ −
= = =w w wy r ryu

y  (13) 

where the symbol /wuτ τ ρ=  denotes the so called friction velocity. 

The velocity distribution can be obtained by solving Eq. (7) with the boundary 
conditions (2) considering empirical Equations (11) and (12). 
The velocity distribution can be determined also from the formula proposed by 
Reichardt based on experimental data [9] 
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where C = 7.8 is the constant. The advantage of the equation (14) is that it gives 
the velocity profile xw throughout the entire interval 0 ≤ ≤ wr r  without division 
of the tube cross-section into subdomains.  
The energy conservation equation is 

( )1ρ ∂ ∂=
∂ ∂

&p x
T

c w r q
x r r

  (15) 

where the heat flux &q  contains the molecular &mq  and turbulent &tq  component 

( )λ ρ ε ∂= + = +
∂

& & &m t p q
T

q q q c
r

 (16) 

The symbols in Eqs. (15) and (16) denote: ρ – density, cp – specific heat at 
constant pressure, x – axial coordinate, εq – eddy diffusivity for heat transfer. 
Using the superposition principle, the fluid temperature can be expressed as the 
sum of the mass averaged temperature ( )1T x  and radial temperature ( )2T r  

( ) ( ) ( )1 2, = +T x r T x T r   (17) 

Taking into account that the heat flux at the tube wall wq&  is constant, Eq. (15) 
can be transformed to the form 

1
2

 
= 

 

&

&
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w m

wd q
R

R d R q w
 (18) 

Rearranging Eq. (16) gives 
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 (19) 
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where the Prandtl number (molecular) Pr and turbulent Prandtl number Prt are 
defined as  

Pr
µν

λ
= = pc

a
  and  Pr τε

ε
=t

q

 (20) 

Equations (18)-(19) are subject to the boundary conditions  

2
1

Pr 1
1

Pr
τελ

ν =
 

+ = 
 

&R w
t w

dT
q

r d R
 (21) 

0 0= =& Rq ,  2
0 0= =R

dT

d R
 (22) 

The system of ordinary differential Equation (7) and (18)-(19) with the 
boundary conditions (2) and (20)-(22) was solved using the finite difference 
method. The heat transfer coefficient at the inner surface of the tube α was then 
calculated as 

2 1 2

α
=

=
−

&w

R m

q

T T
 (23) 

where 2mT  designates the mass average fluid temperature 

1

2 2
0

= ∫m xT w T RdR . (24) 

Next, the Nusselt number values were calculated for different values of Rey-
nolds and Prandtl numbers. The form of the function Nu = f (Re, Pr) was se-
lected which approximates the results obtained in the following Reynolds and 
Prandtl numbers: 2300 ≤ Re ≤ 1000000, 0.1 ≤ Pr ≤ 1000, where the dimension-
less numbers are defined as 

Nu wdα
λ

= , Re m ww d

ν
= , Pr pc µ

λ
= . (25) 

Unknown coefficients ( )1 , ,
T

mx x=x K appearing in the approximating function 

were determined using the least squares method 
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( ) ( )Re Pr 2

1 1

Nu Nu min
n n

m c
ij ij

i j

S
= =

= − =∑∑x  (26) 

where: Num
ij  

and Nuc
ij  - given  and approximated values of the Nusselt number, 

respectively,  nRe  = 10 and nPr = 10  - number of the Reynolds and Prandtl num-
bers which were taken into consideration in the sum (26). 

It was assumed that for 3000 Re≤ the fluid flow in pipes with a smooth 
inner surface is turbulent. It results from the empirical formula proposed by 
Colebrook and White [11] and from the “Moody Chart” (Fig.1) which is based 
on the Colebrook-White formula. In addition, the condition Nu = 4.364 for Re = 
2300 was imposed to ensure continuity of the Nusselt number on the boundary 
between laminar and transition flow. 

Hence, the form of the approximating function was assumed as for the tur-
bulent flow in smooth pipes 

( )
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2 3
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x x
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0.1 Pr 1000

≤ ≤
≤ ≤

 (27)  

where the friction factor ξ is given by the Filonienko formula [5] 

( ) 2
1.82logRe 1.64ξ −= −  (28) 

The coefficients obtained by the least squares method are: 

1 2 31.008 0.0050, 1.08 0.0089, 12.39 0.0080= ± = ± = ±x x x . 
The mean square error of the fit is st = 34.78 and the coefficient of determina-
tion is equal to r2 = 0.9999. The correlation (27) was generalized to account for 
the finite length of the channel and temperature dependent thermal properties of 
the fluid 
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where the symbol ,Num q  denotes the Nusselt number for the laminar flow, 

which can be calculated, for example, using the formulas given in [VDI] 

( )
1/333 3 3

, , ,1 , ,2 , ,3Nu Nu 0.6 Nu 0.6 Num q m q m q m q
 = + + − +  

 (30) 

with 

, ,1

48
Nu 4.364

11m q = =  (31) 

1/3

, , 2Nu 1.953 RePr w
m q

d

L
 =  
 

 (32) 

1/2
1/3

, ,3Nu 0.924Pr Re w
m q

d

L
 =  
 

 (33) 

The symbols dw and Lw in Equations (29)-(30) denote inner or hydraulic diame-
ter and the length of the channel, respectively. 

 

 
Fig. 1. Friction factor versus Reynolds number and relative roughness for commercial 
pipes 
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Fig. 2. Comparison of calculated  friction factors for smooth pipes with the results obtained using 
the formulas proposed by Blasius, Filonienko, Konakov [5-8], and Allen and Eckert [1]

 

3. Comparison with experimental data 

The various explicit formulas for turbulent friction factor, when the tube 
surface is smooth, are compared in Fig. 2 with the results obtained using Eq. 
(10) in conjunction with the formulas (11) and (12). Furthermore, the friction 

factor was calculated from the formula ( )2
8 / muξ += where the symbol mu+ de-

notes the mean velocity 
1

0

2mu u R dR+ += ∫ . The velocity distribution u+ was de-

termined from the Reichardt experimental formula (14). 

 
Fig. 3. Comparison of the results obtained using formula (29) with experimental data by 
Lau, Black, Kemink, and Wesley [8] and the method of calculation proposed by Gnielinski 
[8] 
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Fig. 4. Comparison of the results obtained using formula (29) with experimental data by Olivier 
and Meyer [10] and the method of calculation proposed by Gnielinski [8] 

 
Fig. 5. Comparison of the results obtained using formula (29) with experimental data by Buyuka-
laca et al. [2] and Eiamsa-Ard et al. [4] and the method of calculation proposed by  
Gnielinski [8] 

An inspection of the results shown in Fig. 2 indicates that for small Rey-
nolds numbers the use of the experimental velocity distribution (14) given by 
Reichardt to calculate the friction factor ξ for small Reynolds numbers gives 
very satisfactory results. The formula (29) proposed in this paper is compared in 
Figures 3-5 with experimental data available in literature.  

The comparisons presented in Figures 3-5 show that Eq. (29) gives results 
which are in good agreement with the experimental data. From the analysis of  
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Fig. 6. Comparison of the results obtained using formula (29) and the method of calculation pro-
posed by Gnielinski [8] 

the results presented in Fig.6 it can be seen that the new linear interpolation 
between the equations for laminar and turbulent flow in the transition region 
developed recently by Gnielinski exhibits unusual behavior for short pipes. 

4. Conclusion 

A new equation for the Nusselt number for transition and turbulent flow in 
channels has been proposed. The heat transfer equation developed in the paper 
approximates very well experimental data. 
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WYZNACZANIE KORELACJI NA LICZ Ę NUSSELTA DLA 
PRZEPŁYWU PRZEJŚCIOWEGO I TURBULENTNEGO  

S t r e s z c z e n i e  

Celem pracy było wyznaczenie korelacji na liczbę Nusselta Nu w funkcji współczynnika 
tarcia ξ (Re) oraz liczby Reynoldsa Re i Prandtla Pr, która obejmuje zakres przejściowy i turbu-
lentny. Po rozwiązaniu równań zachowania pędu i energii dla przepływu w rurze na powierzchni, 
której zadana jest stała gęstość strumienia ciepła wyznaczono liczbę Nusselta w funkcji liczby 
Reynoldsa i Prandtla. Następnie wybrano funkcję przybliżającą Nu = f (Re, Pr), w której nieznane 
współczynniki wyznaczono metodą najmniejszych kwadratów. Zaproponowana korelacja na 
liczbę Nusselta ważna jest w przedziałach: 2300 ≤ Re ≤ 1000000, 0.1 ≤ Pr ≤ 1000. Postać korela-
cji została wybrana w taki sposób, że dla liczby Reynoldsa Re = 2300, tj. w miejscu przejścia od 
przepływu laminarnego do przejściowego liczba Nusselta powinna zmieniać się w sposób ciągły. 
Nieznane współczynniki x1, ..., xn występujące w korelacji przejmowania ciepła i wyrażające 
liczbę Nusselta w funkcji liczby Reynoldsa i liczby Prandtla określono metodą najmniejszych 
kwadratów. W celu określenia wartości współczynników przy których suma kwadratów różnicy 
jest minimalna, zastosowano metodę Levenberga-Marquardta. 

Słowa kluczowe: przepływ w rurze, współczynnik tarcia, korelacja na liczbę Nusselta, przepływ 
w zakresie przejściowym i turbulentnym 
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