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AN UPPER BOUND SOLUTION FOR 
COMPRESSION OF VISCOUS MATERIAL 
BETWEEN ROTATING PLATES  

An upper bound solution for compression of viscous material between rotating 

plates is proposed. For many conventional constitutive equations its form has been 

given by Hill. In the case of viscous materials the main difficulty with the applica-

tion of the upper bound theorem is that conventional friction laws are not compat-

ible with the conditions used to prove it. A reduced version of the upper bound 

theorem that accounts for specific viscous constitutive equations and boundary 

conditions is adopted. In such a form, in contrast to the general case, the theorem 

determines an upper bound on the load required to deform the material. The de-

pendence of the upper bound force based on a simple kinematically admissible ve-

locity field on material and process parameters is illustrated. The solution is re-

duced to numerical integration and minimization of a function of one variable. 

Keywords: upper bound, friction, metal forming, viscoplasticity. 

1. Introduction 

The upper bound theorem is a convenient tool for finding approximate ri-

gid plastic solutions, in particular in material forming applications. Most of such 

solutions are based on rigid perfectly plastic material models [1, 2]. In this case 

the functional for minimization is the plastic work rate and a typical result of 

calculations is an upper bound on the load required to deform the material. In 

general, the functional involved in the upper bound theorem depends on the 

constitutive equations chosen. For many conventional constitutive equations its 
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form has been given in [3]. In the case of viscous materials the main difficulty 

with the application of the upper bound theorem is that conventional friction 

laws are not compatible with the conditions used to prove it. This kind of diffi-

culties is reviewed and explained in [4]. Nevertheless, the requirements of the 

upper bound theorem for viscous materials are often ignored [5 - 7 among many 

others]. The correct formulation has been adopted in [8, 9]. Moreover, even if 

the upper bound theorem for viscous materials is applicable, it does not lead, in 

general, to an upper bound on the load applied. However, it has been shown in 

[10] that there is a class of processes where the theorem does provide an upper 

bound on the load applied. The additional requirements in this case are: (i) max-

imum friction law, (ii) stress free boundary conditions on the entire surface of a 

deforming body except the friction surface, and (iii) viscous power-law materi-

al. The maximum friction law postulates that the friction stress is equal to the 

shear yield stress at a given magnitude of the equivalent strain rate. Its use leads 

to the regime of sticking [11] and therefore the upper bound theorem becomes 

applicable [10]. The upper bound theorem with the superimposed restrictions (i) 

to (iii) has been applied to analyze several axisymmetric processes [10, 12]. In 

the present paper the theorem is adopted to find an upper bound load for plane 

strain compression of a block between rotating plates. Such a process is of in-

terest for practical applications [13]. 

2. Statement of the problem 

A schematic diagram of the process is shown in Fig.1. A block of viscous 

material is compressed between two plates rotating with an angular velocityω . 

It is convenient to introduce two coordinate systems, namely a polar coordinate 

system ( ),r θ  and a Cartesian coordinate system ( ),x y , as shown in Fig.1. The 

plates rotate around the origin of the coordinate systems. The surfaces 

0 0cosx R θ=  and 0 0cosx R Lθ= +  are traction free. The maximum friction 

law is assumed at 0θ θ= ± . Because of symmetry, it is sufficient to consider the 

domain 0θ ≥  (or 0y ≥ ). Then, the velocity boundary conditions are 

u rθ ω= −  (1) 

at 0θ θ= , 

0uθ =  (2) 

at 0θ =  and 
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0
r

u =  (3) 

at 0θ θ= . As has been mentioned before, the condition (3) is equivalent to the 

maximum friction law in the case of viscous power-law materials. In (1) to (3), 

r
u  and uθ  are the radial and circumferential velocities, respectively. 

 

Fig. 1.  Schematic diagram of the process 

The material model is defined by the following equations: ij ij
ξ λτ=  and 

n

eq eqKσ ξ= . Here, ij
ξ  are the components of the strain rate tensor, ij

τ  are the 

deviatoric components of the stress tensor, eq
ξ  is the equivalent strain rate, eq

σ  

is the equivalent stress, λ  is a non-negative multiplier, K  is a rheological con-

stant, and n  is the strain rate sensitivity exponent. The equivalent strain rate 

and equivalent stress are defined by 
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( )2 3eq ij ijξ ξ ξ= ,      ( )3 2eq ij ijσ τ τ= . (4) 

For the problem under consideration the upper bound theorem reads [4] 

1n

eq

V

M K dVω ξ +≤ ∫∫∫
 

(5) 

where M is the moment of force P (Fig.1) and eq
ξ  should be calculated with the 

use of a kinematically admissible velocity field. The latter must satisfy the in-

compressibility equation and the boundary conditions (1) to (3). Additional 

conditions following from symmetry are that uθ  is an odd function of θ  and 

r
u  is an even function of θ . Even though those are not necessary conditions 

when the upper bound theorem is adopted to solve the problem, it is advanta-

geous to account for these conditions in kinematically admissible velocity 

fields. Assume that 

( )
0 0

1 cos
2

u
f r

r

θ θ π θ

ω θ θ

  
= − +  

  
 (6) 

where ( )f r  is an arbitrary function of r. The circumferential velocity in the 

form of (6) satisfies the boundary conditions (1) and (2) as well as the addition-

al condition that uθ  is an odd function of θ . The terms in the brackets can be 

understood as the first two terms of a Fourier expansion of an arbitrary function 

of r  and θ  satisfying the aforementioned conditions. The incompressibility 

equation in polar coordinates is 

( )
0

rru u

r

θ

θ

∂ ∂
+ =

∂ ∂
. (7) 

Substituting (6) into (7) and integrating give 

( )
( )

2 2

0 0 0 0 0

cos sin
2 2 2 2

r

r

R

r R
u rf r dr

r r

ω ω π θ π θ π θ

θ θ θ θ θ

−     
= + −    

    
∫ . (8) 

Here R is in general a function of θ . However, in the present solution it is sup-

posed that constant.R = Combining (8) and the boundary condition (3) leads 

to 
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( ) ( )2 2 0

r

R

r R rf r drπ− − =∫ . (9) 

It follows from this equation that ( ) 2f r π= . Then, equations (6) and (8) 

transform to 

0 0

2
1 cos

2

u

r

θ θ π θ

ω θ π θ

  
= − +  

  
. (10) 

( )2 2

2

0 0 0 0

1 2
1 cos sin

2 2 2

r
r Ru

r r

π θ θ π θ

ω θ π θ θ θ

−    
= + −    

    
. (11) 

Equations (10) and (11) provide a kinematically admissible velocity field. 

3. Upper Bound Theorem 

In the case of plane strain deformation the definition for the equivalent 

strain rate (4) written in the polar coordinates simplifies to 

2 22

3
eq rr rθξ ξ ξ= + . (12) 

It has been taken into account here that rr θθξ ξ= −  due to the incompressibility 

equation. The radial and shear strain rates can be calculated by means of (10) 

and (11) with no difficulty. In particular, 

2

2 2

0 0 0 0

1 2sin cos
4 2 2 2

r

R

r
θ

ω π θ π θ π θ
ξ

θ θ θ θ

     
= − − +     

      
. (13) 

2

2

0 0 0 0

2
1 1 sin cos

2 2 2
rr

R

r

ω θ π θ π θ
ξ

θ θ θ π θ

     
= + − +     

      
. (14) 

Substituting (13) and (14) into (12) gives 
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( ) ( )

( )

( )

2 2
2 2

2 2 2

0 2 22

0

0 0 0

0 0 0

1
1 1

43

2
1 sin cos ,

2 2

2sin cos
2 2 2

eq rr r

rr

r

R R

r r
θ

θ

ω
ξ θ ζ θ ζ θ

θ

θ π θ π θ
ζ θ

θ θ π θ

π θ π θ π θ
ζ θ

θ θ θ

   
= + + −   

   

   
= − +   

   

   
= +   

   
 

(15) 

Using (15) the inequality (5) can represented in the form 

( )

( )
( )

( )20

1

1
2 2

2 2
1 0 2

2

0 2 2
00 2

2

1

3 1
1

4

n

n rr

u

r

M BKR d d

ρ θθ

ρ θ

θ

β
θ ζ θ

ρω
ω ρ ρ θ

θ β
ζ θ

ρ

+

+

  
+ +      

=     
    + −    

∫ ∫ . (16) 

Here 
u

M  is an upper bound on M, B  is the thickness of the block, 0r Rρ = , 

2 2

0R Rβ = , ( )1ρ θ  and ( )2ρ θ  are determined from the equations 

0 0cosx R θ=  and 0 0cosx R Lθ= +  in the form 

( ) ( )0 0
1 2

cos cos
,

cos cos

lθ θ
ρ θ ρ θ

θ θ

+
= =

 
(17) 

where 0l L R= . It is convenient to introduce the dimensionless upper bound 

moment by 

( )
1

2 12
0

2

0

3
n

n u
u

n

M
m

BK R

θ

ω

+
+

= . (18) 

It follows from (16) and (18) that 
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( )

( )
( )

( )20

1

1
2 22

2 2

0 2

2
2

0
2

2

1

1
1

4

n

rr

u

r

m d d

ρ θθ

ρ θ

θ

β
θ ζ θ

ρ
ρ ρ θ

β
ζ θ

ρ

+

  
+ +  

  
=  

  
+ −  

  

∫ ∫ . (19) 

The right hand side of this equation should be minimized with respect to β  to 

obtain the best upper bound based on the kinematically admissible velocity field 

chosen. It is obvious from the definition for β
 
,that 0β > . 

4. Numerical Results 

Minimization in (19) has been completed numerically. The variation of the 

dimensionless moment 
u

m  with n , 0θ  and l  is illustrated in Figs.2 to 4. The 

variation of β  is also of some interest because its magnitude determines the 

sense of the shear strain rate rθξ , in particular at points of the friction surface. It 

follows from the constitutive equations that the shear stress has the same sense. 

Therefore, it finally determines the direction of the friction stress. In particular, 

equation (13) shows that 0rθξ =  at n
ρ ρ β= = , 0rθξ <  in the interval 

nρ ρ> , and 0rθξ >  in the interval nρ ρ< . Therefore, if 01 1 cosn lρ θ< < +  

, the friction stress is directed to the axis of rotation in the interval nρ ρ>  and 

from this axis in the interval nρ ρ< . If 1 nρ> , the friction stress is directed to 

the axis of rotation over the entire friction surface, and if 01 1 cos nθ ρ+ <  it is 

directed from the axis of rotation over the entire friction surface. However, the 

latter inequality is not satisfied in the cases considered. In particular, the varia-

tion of nρ  with n , 0θ  and l  is illustrated in Figs.5 to 7. The dash line corres-

ponds to 1nρ = . Thus, above this line 1nρ >  and in such processes the neutral 

point actually exists at the friction surface. In the other case the friction stress is 

directed to the axis of rotation over the entire friction surface. 
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5. Conclusions 

A new upper bound solution for viscous material compressed between two 

rotating plates has been found. A reduced form of the upper bound theorem has 

been adopted allowing for the determination of an upper bound on the force 

applied. The dimensionless representation of the moment of this force is inde-

pendent of the angular velocity of plates, though the force of course is. The 

solution is illustrated in Figs. 2 to 7. The dependence of the moment on material 

and process parameters (Figs.2 to 4) is in agreement with physical expectations. 

In particular, the moment increases as l increases. The dimensionless moment 

increases as 0θ  increases. However, it is seen from (18) that 
u

M  decreases. It 

also follows from (18) that 
u

M  is an increasing function of both ω  and K. The 

variation of nρ  with material and process parameters (Figs.5 to 7) shows that 

the friction stresses may or may not change its direction. In the latter case, the 

friction stress is directed to the axis of rotation. It is interesting to mention that 

0nρ =  at 0 4θ π= , i.e. in this case the strain rate components are indepen-

dent of r, as follows from (13) and (14). 

 

 

 

Fig. 2. Variation of the dimensionless moment with q0 at different values of l and n = 0.1 
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Fig. 3. Variation of the dimensionless moment with q0 at different values of l and n = 0.3 

 

Fig. 4. Variation of the dimensionless moment with q0 at different values of l and n = 0.5 

 

Fig. 5. Variation of the position of neutral point with q0 at different values of l and n = 0.1 
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Fig. 6. Variation of the position of neutral point with q0 at different values of l and n = 0.3 

 

Fig. 7. Variation of the position of neutral point with q0 at different values of l and n = 0.5 
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METODA GÓRNEJ OCENY W ZASTOSOWANIU DO ŚCISKANIA 
LEPKIEGO MATERIAŁU POMIĘDZY OBRACAJĄCYMI SIĘ 
PŁYTAMI 

S t r e s z c z e n i e  

W artykule zaproponowano wykorzystanie metody górnej oceny do opisu ściskania lepkie-

go materiału pomiędzy obracającymi sie płytami. Dla wielu konwencjonalnych równań konstytu-

tywnych ich postać została przedstawiona przez Hill’a. W przypadku materiałów lepkich głów-

nym problemem przy wykorzystaniu twierdzenia górnej granicy jest to, że klasyczne prawa tarcia 

nie są kompatybilne z warunkami stosowanymi do jego udowodnienia. Zastosowano uproszczoną 

wersję twierdzenia górnej granicy, uwzględniającą specyficzne równania konstytutywne materia-

łów lepkich oraz warunki brzegowe. W takiej postaci, w przeciwieństwie do przypadku ogólnego, 

twierdzenie określa górną granicę obciążenia wymaganą do odkształcenia materiału. Przedsta-

wiono wpływ siły określonej za pomocą twierdzenia górnej granicy na podstawie kinematycznie 

dopuszczalnego pola prędkości na materiał i parametry procesu. Rozwiązanie zredukowano do 

całkowania numerycznego i minimalizacji funkcji jednej zmiennej. 
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