
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 288, Mechanika 85
RUTMech, t. XXX, z. 85 (4/13), październik-grudzień 2013, s. 421-430

Krzysztof GŁOWACKI1

AVIONICS SYSTEMS SOFTWARE DEVELOPMENT
ACCORDING TO THE METHODOLOGIES CON-
FORMING DO-178B

Avionics systems software of modern aircraft must fulfil rigorous requirements of

reliability because of executing critical tasks which have a direct impact on flight

safety (safety critical software). Development of such software is a tremendous

project which main goal is to produce software according to the methodology con-

forming DO-178B guidelines. The paper answers the question how generally

known and widely used standards for software development influence the reliabil-

ity of software being developed. Special emphasis was placed on the coding phase

(development of the source code). The paper presents examples of software bugs

that result from lack of adherence (or violation) to rules and guidelines of stan-

dards. It discusses their impact on the software and generally on the system, and

their consequences. Basing on own experience, the author convinces that obeying

the standards not only unifies both documentation and the source code making

them more readable and maintainable but also, what is of key importance from re-

liability point of view, prevents producing software bugs.

Keywords: DO-178 standard, avionics systems software, flight safety

1. Introduction

 Airborne systems of modern aircraft must fulfil rigorous requirements of

reliability because of executing critical tasks which have a direct impact on

flight safety (safety critical). Software reliability can be achieved by following

three concepts during software development:

• error avoidance (by following safe practices),

• use of fault tolerance mechanisms (e.g. redundancy, diagnostics, BIT),

• testing (error detection and elimination).

Complete error avoidance in the software is impossible. Therefore there is an

absolute necessity to minimize the probability of its occurrence. This is the main

goal of DO-178B standard [1] that delivers guidelines for software development.

Confirming these guidelines assures developing and employing a highly reliable

1 Autor do korespondencji/corresponding author: Krzysztof Głowacki, MTU Aero Engines Pol-

 ska, Tajęcina 108, 36-002 Jasionka, tel. (17) 7710482, e-mail: Krzysztof.GLOWACKI@mtupol-

 ska.com

422 K. Głowacki

software development methodology. Guidelines of DO-178B standard are used

widely in projects provided by MTU Aero Engines Polska. Software Department

of Engine Control and Monitoring Systems from its very beginning takes part

within e.g. the following software development and certification projects pre-

sented in Table 1.

Table 1. Software development and certification projects

Aircraft Project Unit

Eurocopter Tiger MTR390 ECMU Engine Control and Monitoring Unit

Airbus A400M
TP400 ECU Engine Control Unit

TP400 EPMU Engine Protection and Monitoring Unit

Eurofighter Typhoon EJ200 DECMU Digital Engine Control and Monitoring Unit

2. DO-178B in practice

 DO-178B standard divides the area of software production into three key

processes: SW Planning Process, SW Development Process and Correctness

Process. The last one includes all activities that ensure correctness and quality of

software. According to DO-178B standard, effective planning is a determining

factor in producing software. The software life cycle, the software development

methodology and its model are defined during the planning phase together with

methods and tools that will be used to produce the software as well as specific

plans and standards for each phase of software development. It is worth noting

that these plans and standards are developed for the need of particular project

(therefore they are called as project plans and project standards). This is required

by the certification process. Project plans and standards constitute the basis for

certification, it means that certification authority at first approves them, and then

checks if the software development was conducted according to the project plans

and verifies the adherence of the software and associated documentation to the

project standards. Considering SW Development Process, DO-178B standard

distinguishes its 3 stages, for all of them it requires correspondingly three project

standards:

• Software Requirements Process,

• Software Requirements Standard (SRSTD),

• Software Design Process,

• Software Design Standard (SDSTD),

• Software Coding Process,

• Software Coding Standard (SCSTD).

 Project standards used in different avionics software projects are similar.

The differences can result from establishing different methods and practices of

software development, different tools or programming languages used, and fi-

Avionics systems software development... 423

nally different hardware platforms. Similarities come first of all from the fact

that most likely almost all project standards are developed on the basis of well-

known and widely used software standards. There are numerous popular and

acclaimed guidelines and standards for software development. It is worth men-

tioning as examples standards of programming languages (C, C++, Ada) pub-

lished by such organisations as ANSI, IEEE, IOC or IEC. Additionally, there is a

full range of standards for integer and floating point arithmetic, interface stan-

dards (ABI, EABI, API, ASI), and many others. All these, if they are helpful in

particular project, can be used as a basis for development of project standards.

3. Standards

 Every software engineer is aware that low quality requirements can lead to

their incorrect interpretation, and in consequence to their incorrect implemen-

tation in the software. To prevent this kind of mistakes rules and guidelines of

standards dedicated for software requirements have to be followed. Below there

are of key importance attributes of high quality requirements according to

ANSI/IEEE 830-1998 standard [2]: correctness, unambiguousness, comple-

teness, coherence, verifiability, modifiability, traceability. Standards dedicated

for software architecture contain the architecture design concepts, methods,

principles and practices of modelling and representing software architecture. The

most popular concept widely used especially in large projects is a functional

decomposition method according which system is broken down into parts that

are easier to conceive, understand, program and maintain. The paper presents the

examples of principles and rules that need to be followed in the modern airborne

systems software: modularity, encapsulation, loose coupling, partitioning, port-

ability, reusability. As an example of the known architecture standard that is

worth mentioning, is ANSI/IEEE 1471-2000 standard [3]. Software coding stan-

dards (coding conventions) are a set of guidelines and rules for a specific pro-

gramming language that recommend programming style, practices and methods

that used to improve the readability of the source code, to make the software

maintenance easier and to avoid making errors (producing software bugs). Cod-

ing standard rules cover such areas like programming style (e.g. indentation,

nesting, capitalization), naming conventions (style of user-defined identifiers

names, such as functions, types, variables, files), comment conven-

tions (style of code comments, documenting changes, descriptions of algorithms)

and programming constructs (programming language dependent rules that in-

clude both, recommended and forbidden structures that results e.g. from con-

straints of target hardware platform or development tools). From the software

reliability point of view, the most important are rules connected to recommended

and forbidden programming constructs [4-8]. Below a few of them are men-

tioned as examples:

424 K. Głowacki

• avoid hazardous techniques (some of them are useful but require great

care)

− use of go to statement,

− use of pointers and pointer arithmetic,

− use of parallel computing,

− use of floating point arithmetic,

− handling of interrupts and exceptions,

− use of recursion,

− use of dynamic memory allocation,

• apply safe techniques (defensive programming)

− data protection techniques (modularity, encapsulation, memory mana-

gement),

− check for null pointers,

− check for data validity (checksums, consistency checks, range checks),

− check for response time (prevents blocking of the system),

− check for divisions by 0,

− check for overflows/underflows,

− initialisation of all variables to safe values,

− care about special cases and boundary conditions (empty sets, infini-

tive loops).

4. Examples

4.1. Time conversion (Ada95)

 The programmer’s task was to implement the following software require-

ment into the source code in Ada95 programming language: „Convert time read

from RTC (Real Time Clock) device into seconds”. Time read from RTC device

was stored within the following variable:

-- Time read from RTC (Real Time Clock)

rtc_time : RTC_TIME_T;

Variable type was defined as follows:
type RTC_TIME_T is

 record

 HOURS : U_INT_8; -- Possible values in range 0..23

 MINUTES : U_INT_8; -- Possible values in range 0..59

 SECONDS : U_INT_8; -- Possible values in range 0..59

 end record;

Calculated time in seconds was stored in a variable defined as follows:

-- Time as seconds

time_as_seconds : S_INT_16;

Avionics systems software development... 425

The Table 2 presents types of variables used within this paper and their ranges.

Table 2. Typer of variables and their ranges

Type Purpose Range Range

S_INT_8 Signed Integer 8 Bit –27
÷+27 – 1 –128÷127

S_INT_16 Signed Integer 16 Bit –215
÷+215 – 1 –32768÷32767

S_INT_32 Signed Integer 32 Bit –231
÷+231 – 1 –2147483648÷2147483647

U_INT_8 Unsigned Integer 8 Bit 0÷+28 – 1 0÷255

U_INT_16 Unsigned Integer 16 Bit 0÷+216 – 1 0÷65535

U_INT_32 Unsigned Integer 32 Bit 0÷+232 – 1 0÷4294967295

The programmer wrote the following lines of code:

-- Calculate time in seconds

time_as_seconds := S_INT_16(rtc_time.HOURS * 3600) +

 S_INT_16(rtc_time.MINUTES * 60) +

 S_INT_16(rtc_time.SECONDS);

 During execution of tests on the software it has been observed that indica-

tions of time in seconds are correct only at the beginning of software execution.

It is observed that approximately after 5 minutes time in seconds starts to indi-

cate incorrect and random values. Analysis confirmed that the Source Code pre-

sented above contains software bugs. Compiler did not generate any error or

warning (Green Hills Software Ada 95 Compiler). Analyses of the source code

have been started in search of software bug from the point of view of possible

overflows.
-- Sum of maximum values of each element can not be greater than

-- maximum value of time_as_seconds range

time_as_seconds :=

 S_INT_16(rtc_time.HOURS * 3600) + -- max = 23 * 3600 = 82800 | > 32767

 S_INT_16(rtc_time.MINUTES * 60) + -- max = 59 * 60 = 3540 |

 S_INT_16(rtc_time.SECONDS); -- max = 59 = 59 |

 -- =======================|=========

 -- SUMA = 86399 | > 32767

 The results were the following:

• overflow of time_as_seconds (its maximum value 86399 is not contained

in range S_INT_16),

• overflow of rtc_time.HOURS * 3600.

(Its maximum value 82800 is not contained in range S_INT_16).

It can be easily calculated that the detected overflows will cause incorrect soft-

ware behaviour after 9 h, 6 min and 7 s. During further analysis stated the fol-

lowing facts:

• compiler considers multipliers (values 60 and 3600) to be also U_INT_8

type, because only then it can multiply elements HOURS and MINUTES by

these factors,

426 K. Głowacki

• (note: type checking is specific for Ada programming language, opera-

tion of multiplication, addition, etc. are allowed only if data is of the

same type, otherwise compiler generates an error and preclude software

build),

• the result of these multiplications is stored as U_INT_8.

The following conclusions were reached:

• overflow of value 3600 (value 3600 is not contained in range U_INT_8)
 3600 : 00001110 00010000

 255 : 00000000 11111111

Compiler considers the value 3600 as U_INT_8. So it cuts the most sig-

nificant byte of value 3600 represented in binary format leaving the least

significant byte. The value that was left in the least significant byte in

decimal format is equal to 16. Therefore the conclusion is that the ele-

ment HOURS is not multiplied by 3600, but always by 16,

• overflow of rtc_time.MINUTES * 60 (its maximum value 3540 is not con-

tained in range U_INT_8)
 3540 : 00001101 11010100

 255 : 00000000 11111111

The overflow occurs when element MINUTES reaches value 5.

 The general conclusion is that the detected errors will cause incorrect soft-

ware behaviour after 4 min and 59 s. The following solution was presented. First

of all, the range of time_as_seconds should be increased (its type was changed

from S_INT_16 to S_INT_32). To avoid overflow of factor 3600, and products

rtc_time.HOURS * 3600 and rtc_time.MINUTES * 60, the type casting order was

changed. Elements HOURS and MINUTES should be type casted to S_INT_32 first,

then multiplied by values 3600 and 60 (note that the factors will be considered

by the compiler in this case to be S_INT_32 type).

-- Calculate time in seconds

time_as_seconds := M_S_INT_32(rtc_time.HOURS) * 3600 +

 M_S_INT_32(rtc_time.MINUTES) * 60 +

 M_S_INT_32(rtc_time.SECONDS);

The source code above is correct, however it does not follow the following rule:
„Untyped constants (named numbers) shall not be used.”

The rule says that values which have specified meaning in the software should

be represented by constants with defined type. Exceptions can be e.g.: value 0

(initialisation value), value 1 (incrementing, decrementing). The solution follow-

ing the rule above is:
-- Calculate time in seconds

time_as_seconds := S_INT_32(rtc_time.HOURS) * HOUR_TO_SEC_CS +

 S_INT_32(rtc_time.MINUTES) * MINUTE_TO_SEC_CS +

 S_INT_32(rtc_time.SECONDS);

where constants should be defined as follows:

-- Constant converting minutes to seconds

MINUTE_TO_SEC_CS : constant S_INT_32 := 60;

-- Constant converting hours to seconds

HOUR_TO_SEC_CS : constant S_INT_32 := 3600;

Avionics systems software development... 427

 Note that if the programmer follows the rule presented above writing this

part of code, compiler would generate an error and preclude software build.

Then the programmer would need to provide type casting taking full responsibil-

ity for correctness of these operations.

4.2. Boolean type variables (C)

 There are three basic versions of C programming language known as ANSI

C / C89 / C90, C99 and C11 defined by corresponding standards published by

organisations ANSI, ISO and IEC. All three versions are very similar, however

there are some differences. On the basis of C89/C90 and C99 comparison this

example shows the difference of the usage of Boolean type and discusses mis-

understandings resulting from this difference that can lead to producing software

errors. Within C99 there is a built-in Boolean type. This means that including

proper header (in this case <stdbool.h>) the programmer can use it. Within C90

there is no built-in Boolean type. That means it must be defined by the pro-

grammer manually (e.g. as a typedef or enum, as presented below).
/* Boolean definition by typedef */

typedef int boolean;

#define TRUE 1

#define FALSE 0

/* Boolean definition by typedef */

typedef int boolean;

#define TRUE (1==1)

#define FALSE (!TRUE)

/* Boolean definition by enum */

typedef enum { FALSE, TRUE } boolean;

All three Boolean definitions presented above work in a program equally how-

ever in a different manner than the C99 Boolean type. The difference is shown

by the following programming experiment.

 There have been two very similar programs written and separately built by

using the compiler GCC 4.5.3 (GNU Compiler Collection) configured for two

versions of C programming language, corresponding C90 and C99. In both pro-

grams three Boolean variables have been created (Table 3). The task of both

programs was to display the logical values of those variables and the results of

conjunctions between them (Table 4). Conclusions from this programming ex-

periment are presented in Table 5.

Table 3. Boolean variables

Standard C90 Standard C99

boolean b1 = FALSE;

boolean b2 = TRUE;

boolean b3 = 8;

bool b1 = FALSE;

bool b2 = TRUE;

bool b3 = 8;

428 K. Głowacki

Table 4. Logical values of Boolean variables

Standard C90 Standard C99

b1 : 0 b2 : 1 b3 : 8

b1 && b2 : 0

b1 && b3 : 0

b2 && b3 : 0

b2 && 8 : 0

b2 && (boolean)8 : 0

b1 : 0 b2 : 1 b3 : 1

b1 && b2 : 0

b1 && b3 : 0

b2 && b3 : 1

b2 && 8 : 0

b2 && (bool)8 : 1

Table 5. Conclusions from this programming experiment

Standard C90 Standard C99

Operands have logical values:

- 0 (FALSE) when operand is equal to 0

- 1 (TRUE) when operand is equal to 1

- undefined when operand is not equal to 0 and

 not equal to 1

Operands have logical values:

- 0 (FALSE) when operand is equal to 0

- 1 (TRUE) when operand is not equal to 0

boolean b3 = 8

is not TRUE and not FALSE

bool b3 = 8

is TRUE

 Programmers using C99 version are safe but those coding in C90 that do

not know the difference discussed above can produce software errors like this

one presented below. The statuses of temperature measurement are read from the

following buffer elements:
rx_buffer[4] /* Sensor status (Bool) U_INT_8 */

rx_buffer[5] /* Signal status (Bool) U_INT_8 */

It is assumed that buffer elements 4 and 5 contain statuses of correspondingly

sensor and signal failures, where value 0 indicates failure occurrence, value 1

lack of failure. If at least one failure is detected the program should set the

global temperature measurement flag to TRUE, otherwise to FALSE. The program-

mer wrote the following lines of code:
/* Set the temperature measurement failure flag */

if (rx_buffer[4] == 1) || (rx_buffer[5] == 1)

{ temp_measure_fail = TRUE; }

else

{ temp_measure_fail = FALSE; }

 The source code presented above is not correct due to the fact that sensor

and signal statuses are stored in buffer element of type U_INT_8 (possible value in

range 0÷255). Therefore, in case of data corruption or transmission failure there

is a possibility that buffer element 4 and/or 5 contain the value other than 0 and

1. In such case the program will set the flag temp_measure_fail to FALSE indicat-

ing lack of sensor and signal failures. This can lead to confidence that the tem-

perature measurement and its value are correct. The programmer produces a

software bug because he did not follow the following rule:

„Boolean data shall be tested against 0 value (FALSE).”

Avionics systems software development... 429

According to this rule the software requirement should be implemented in one of

the following two correct ways:
if (rx_buffer[4] == 0) && (rx_buffer[5] == 0)

{ temp_measure_fail = FALSE; }

else

{ temp_measure_fail = TRUE; }

or

if (rx_buffer[4] != 0) || (rx_buffer[5] != 0)

{ temp_measure_fail = TRUE; }

else

{ temp_measure_fail = FALSE; }

It is worth a mention that the source code built by using compiler configured for

C99 version of C programming language would generate correct program

(temp_measure_fail would be set to TRUE).

5. Summary

 The main goal of software production according to DO-178B standard is to

increase the software reliability by avoiding errors during its development. For

that purpose there is a necessity to strictly follow the rules and guidelines de-

fined in standards. The examples presented within this paper show that follow-

ing these rules prevent producing software bugs that can be undetectable during

software build, and hidden or latent errors that reveal after some time of soft-

ware run what is especially dangerous for airborne systems software. Conform-

ing the rules and guidelines in the end saves time and effort needed for analysis

of software requirements and source code in order to find and eliminate software

bugs.

References

[1] DO-178B: Software Considerations in Airborne Systems and Equipment Certi-

fication.

[2] ANSI/IEEE 830-1998: Recommended Practice for Software Requirements Speci-

fications.

[3] ANSI/IEEE 1471-2000: Recommended Practice for Architecture Description of

Software-Intensive Systems.

[4] MISRA-C:2004: Guidelines for the use of the C language in critical systems.

[5] ARINC Specification 653P1-2: Avionic Application Software Standard Interface.

[6] Hilderman V., Baghai T.: Avionics certification. A complete guide to DO-178

(Software), DO-254 (Hardware). Avionics Communications Inc., 2011.

[7] Maguire S.: Writing solid code: Microsoft’s techniques for developing bug-free

C programs. Microsoft Press, 1993.

[8] Dąbrowski W., Subieta K.: Podstawy inżynierii oprogramowania. Polsko-Japońska

Wyższa Szkoła Technik Komputerowych, Warszawa 2005.

430 K. Głowacki

Projekt współfinansowany ze środków Unii Europejskiej z Europejskiego Funduszu

Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka.

PROJEKTOWANIE OPROGRAMOWANIA SYSTEMÓW AWIONIKI
ZGODNEGO Z WYTYCZNYMI STANDARDU DO-178B

S t r e s z c z e n i e

 Oprogramowanie systemów awioniki współczesnych statków powietrznych ze względu na

krytyczność wykonywanych zadań mających bezpośredni wpływ na bezpieczeństwo lotu musi

spełniać zaostrzone kryteria niezawodności. Projektowanie takowych systemów bywa ogromnym

przedsięwzięciem, którego celem jest wytworzenie oprogramowania zgodnie z metodologią

spełniającą wytyczne standardu DO-178B. Niniejsza praca odpowiada na pytanie, w jaki sposób

powszechnie znane i stosowane standardy wpływają na niezawodność projektowanego oprogra-

mowania. Szczególny nacisk położono na etap kodowania (tworzenia kodu źródłowego). Na

przykładach przedstawiono błędy w oprogramowaniu, które wynikają bezpośrednio z niestoso-

wania się do reguł standardów, omówiono ich genezę, a także wpływ na działanie oprogramo-

wania i całego systemu, oraz ich konsekwencje. Autor na podstawie własnych doświadczeń prze-

konuje, że stosowanie standardów nie tylko ujednolica i wprowadza przejrzystość zarówno

w dokumentacji projektowej, jak i w kodzie źródłowym, ale również, co z punktu widzenia

niezawodności systemów awioniki jest kluczowe, zapobiega popełnianiu błędów w oprogramo-

waniu.

Słowa kluczowe: oprogramowanie systemów awioniki, bezpieczeństwo lotu, standard DO-178B

DOI:10.7862/rm.2013.38

Otrzymano/received: 25.10.2013 r.

Zaakceptowano/accepted: 22.11.2013 r.

