Marek GÓRAL¹ Tadeusz KUBASZEK² Konrad GAJEWSKI³

WPŁYW WARUNKÓW KRZEMOWANIA METODĄ KONTAKTOWO-GAZOWĄ NA MIKROSTRUKTURĘ WARSTW NA PODŁOŻU TYTANU

W artykule przedstawiono wyniki badań nad wytwarzaniem warstw krzemkowych na podłożu tytanu Grade 2 metodą kontaktowo-gazową. Stosowano dwa rodzaje proszków o różnej zawartości Si (ok. 10 i 48% mas.) oraz fluorek magnezu i aluminium jako aktywatory. Stwierdzono, że zastosowanie proszku o mniejszej zawartości krzemu skutkuje powstaniem warstw o głębokości nieprzekraczającej 5 µm. Zastosowanie proszku o dużej zawartości Si i AlF₃ jako aktywatora skutkuje powstaniem wielostrefowej warstwy o głębokości ok. 15 µm, złożonej z faz TiSi, Ti₅Si₄, Ti₅Si₃ i TiSi₂.

Słowa kluczowe: krzemowanie, stopy tytanu, warstwy żaroodporne, krzemki tytanu

1. Wprowadzenie

Stopy tytanu, cechujące się wysoką wytrzymałością względną oraz trwałością w warunkach zmęczenia i pełzania, są ważnymi materiałami stosowanymi w technice lotniczej. Podstawowe ograniczenie w zastosowaniu tych stopów stanowi mała odporność na utlenianie wysokotemperaturowe. Zwiększenie odporności korozyjnej można uzyskać przez wprowadzenie procesów wytwarzania warstw, m.in. krzemowanie. Zgodnie z układem równowagi fazowej krzem tworzy z tytanem krzemki typu Ti₃Si, Ti₅Si₃, Ti₅Si₄, TiSi, TiSi₂ [1, 2]. Przez ostatnie lata uwaga badaczy koncentrowała się na krzemku Ti₅Si₃, który charakteryzuje się wysoką temperaturą topnienia (2130°C), gęstością (4,32 g/cm³) mniejszą niż tytan, a przede wszystkim wysoką odpornością na utlenianie. Krzemowanie tytanu metodą kontaktowo-gazową przeprowadzili B.V. Cockeram oraz R.A. Rapp [3]. Uzyskano warstwę składającą się z pięciu faz: TiSi₂, TiSi, Ti₅Si₄, TiSi₃, Ti₅Si₃, oraz

¹ Autor do korespondencji: Marek Góral, Politechnika Rzeszowska, al. Powstańców Warszawy 12, 35-959 Rzeszów, tel. 17 8653656, e-mail: mgoral@prz.edu.pl

² Tadeusz Kubaszek, Politechnika Rzeszowska, e-mail: tkubaszek@prz.edu.pl

³ Konrad Gajewski, Politechnika Rzeszowska, e-mail: k.gajewskix@gmail.com

Ti₃Si. Wytwarzano je przy następujących warunkach procesu: temperatura 950, 1050 i 1150°C oraz czas 3, 6, 12 i 24 h. Jako aktywatory stosowano halogenki: AlF₃, MgF₂ i CuF₂. Mieszanina proszku zawierała (% mas.) 10% krzemu, 2% fluroku oraz 88% wypełniacza Al₂O₃. Warstwami o największej głębokości charakteryzowała się próbka wytworzona w temperaturze 1150°C w czasie 12 h przy użyciu aktywatora MgF₂. Stwierdzono dużą kruchość powstałych warstw. W dalszych badaniach warstwy krzemkowe modyfikowano B oraz Ge. Jako aktywator wybrano fluorek magnezu MgF₂. Uzyskano warstwę 5-strefową złożoną z różnych rodzajów krzemków tytanu i cienką warstwę TiB₂ na powierzchni. Głębo-kość warstwy rosła wraz ze zwiększeniem aktywności boru w borku tytanu lub użyciem innego, mniej stabilnego aktywatora, jak AlF₃ czy CuF₂. Jednocześnie stwierdzono, że dodatek Ge spowalnia wzrost warstw Ti(Si, Ge) wytwarzanych w procesie kontaktowo-gazowym z użyciem aktywatorów MgF₂ i AlF₃. Warstwy na podłożu stopów Ti-22Al-27Nb oraz Ti-20Al-22Nb przy modyfikacji B oraz Ge były złożone ze stref krzemków TiSi₂ i TiSi.

Prace nad wytworzeniem warstwy Ti₅Si₃ w dwuetapowym procesie – osadzania metodą gazową i obróbki cieplnej przeprowadzili D. Vojtech i wsp. [4]. Uzyskano na podłożu Ti warstwę o głębokości 1-2 µm i twardości 1500 HV. Stwierdzono, że warstwa ta posiada wysoką odporność na utlenianie nawet w 900°C. J. Subrahmanyam i J. Annapurna [4] zastosowali metodę kontaktowogazową do wytworzenia na podłożu tytanu technicznego (99,6%) warstwy złożonej z kryształów faz międzymetalicznych TiAl i TiAl₃. Stosowano proszek złożony z fazy NiAl, aktywatora NH₄Cl oraz wypełniacza – Al₂O₃. Głębokość otrzymanych warstw wynosiła od 40 do 50 µm. Stwierdzono, że warstwa złożona z kryształów fazy TiAl₃ cechuje się lepszą odpornością na utlenianie niż warstwa złożona z fazy TiAl. W trakcie prób utleniania w temperaturze 1000°C i czasie 3 h stwierdzono pojawienie się warstw tlenków TiO₂ oraz Al₂O₃ [5]. Dane literaturowe [3-5] wskazują, że metoda kontaktowo-gazowa pozwala na uzyskanie warstw krzemkowych na podłożu stopów tytanu. Podjęto zatem badania nad ich wytwarzaniem w różnych warunkach procesu.

2. Materiał i metodyka badań

W prowadzonych badaniach jako materiał podłoża przyjęto tytan techniczny gatunku Grade 2. Próbki w kształcie blaszek o wymiarach 30 x 20 mm zostały wstępnie wyszlifowane na papierze SiC o gradacji 320. Próbki odtłuszczano w izopropanolu. Krzemowanie metodą kontaktowo-gazową prowadzono w piecu z atmosferą ochronną argonu (natężenie przepływu 0,5 dm³/min) firmy Xeon. Próbki umieszczano w kontenerze wykonanym ze stali żaroodpornej, do którego zasypywano proszek złożony z krzemu, aktywatora halogenkowego i wypełniacza – tlenku Al₂O₃. Przeprowadzono 6 procesów krzemowania w różnej temperaturze i różnym czasie, z użyciem proszków o różnym składzie chemicznym (tab. 1.). Badania mikrostruktury prowadzono za pomocą skaningowego mikroskopu elektronowego HITACHII S-3400N. Dodatkowo dokonano analizy składu fazowego metodą dyfrakcji rentgenowskiej XRD.

	Warunki procesu		Skład chemiczny proszku		
Ozn. procesu	temperatura, °C	czas, h	rodzaj aktywatora	zawartość ak- tywatora, % mas.	zawartość Si, % mas.
P1	950	4	MgF_2	2	10,0
P2	950	2	MgF_2	2	10,0
P3	950	3	MgF_2	2	10,0
P4	950	4	AlF ₂	3	48.5
P5	980	4	MgF_2	5	47.5
P6	980	8	MgF_2	4	48,0

Tabela 1. Warunki procesu krzemowania dyfuzyjnego Table 1. Parameters of the pack siliconizing process of titanium

3. Wyniki badań

W procesie P1 prowadzonym w temperaturze 950°C w czasie 4 h stosowano proszek zawierający 10% mas. Si, aktywator MgF₂ – 2% oraz wypełniacz – reszta. Uzyskano warstwę o grubości od 4,32 do 6,35 µm. Na podstawie badań mikroskopowych stwierdzono istnienie dwóch charakterystycznych obszarów warstwy (rys. 1a, b). Ustalono, że pierwszy z nich ma budowę jednowarstwową, a zawartość Ti i Si wynosi odpowiednio 51,1 i 48,9% at. (rys. 1a, tab. 2.). Stężenie krzemu i tytanu wskazuje na możliwość powstania krzemku TiSi. Poniżej, w mikroobszarze 2. (rys. 1a) głównym składnikiem był tytan. Analiza wyników składu chemicznego w drugim z analizowanych obszarów oraz układu równowagi Ti-Si [2] może wskazywać na powstanie krzemków typu Ti₅Si₄ lub TiSi (mikroobszary 3. i 4., rys. 1b). Drugi proces (P2) prowadzono w krótszym czasie, wynoszącym 2 h, z użyciem proszku o takim samym składzie chemicznym. Powstała nieciągła warstwa o grubości < 3 μm. Jednocześnie analiza składu chemicznego w obszarze zewnętrznym warstwy (mikroobszar nr 1 na rys. 2.) wykazała małą zawartość krzemu < 1,5% at., resztę zaś stanowił tytan. W mikroobszarze 2. (rys. 2.) stwierdzono obecność jedynie tytanu.

Trzeci z procesów (P3) prowadzono w czasie 3 h z użyciem proszku o niezmienionym – w porównaniu z procesami P1 i P2 – składzie chemicznym. Na podstawie badań mikroskopowych ustalono, że powstała warstwa ma głębokość wynoszącą od 4,32 do 4,88 µm. Analiza składu chemicznego w mikroobszarach warstwy (mikroobszary nr 1 i 2 na rys. 3., tab. 3.) wykazała właściwie taką samą zawartość krzemu – 42,5% at. oraz tytanu – 57,5% at., co wskazuje – biorąc

Rys. 1. Mikrostruktura warstwy krzemkowej w obszarach o budowie: a) jedno-, b) dwuwarstwowej na podłożu tytanu wytworzonej w procesie P1 (tab. 1.)

Fig. 1. The microstruture of: a) single-, b) double silicide area of coating obtained on titanium during the P1 process (tab. 1.)

Tabela 2. Wyniki analizy składu chemicznego w mikroobszarach 1-4 (rys. 1a, b)

Table 2. Results of chemical composition analysis in microareas 1-4 marked on fig. 1a, b

Milmoohagan	Zawartość pierwiastków, % at.		
WIKTOODSZAF	Si	Ti	
1	48,9	51,1	
2	1,6	98,4	
3	44,9	55,1	
4	40,1	59,9	

Rys. 2. Mikrostruktura warstwy krzemkowej na podłożu tytanu wytworzonej w procesie P2 (tab. 1.)

Fig. 2. The microstruture of silicide coating obtained on titanium during the P2 process (tab. 1.)

pod uwagę układ równowagi fazowej Ti-Si [2] – na możliwość powstania prawdopodobnie krzemków tytanu typu Ti₅Si₄. Przeprowadzenie procesu P4 pozwoliło na ustalenie wpływu zastosowania fluorku aluminium AlF₃ jako aktywatora w procesie krzemowania tytanu. Zastosowano również proszek o dużej zawartości krzemu – 48,5% mas. (tab. 1.). Na podstawie badań mikroskopowych ustalono, że powstała warstwa o głębokości od 13,42 do 20,50 μ m (rys. 4.). Na podstawie badań mikroskopowych i analizy składu chemicznego w mikroobszarach warstwy, a także układu równowagi Ti-Si [2] wyodrębniono 4 charakterystyczne strefy (rys. 4., tab. 4.):

- zewnętrzną (mikroobszar nr 1), o grubości średniej 6,6 μm i zawartości 61,8% at. Si oraz 38,2% at. Ti – złożoną prawdopodobnie z krzemku TiSi₂,
- środkową zewnętrzną (mikroobszar nr 2) o grubości ok. 6 μm i zawartości Si – 46,2% at. oraz Ti – 53,8% at. – złożoną prawdopodobnie z krzemków TiSi lub Ti₅Si₄,
- środkową wewnętrzną (mikroobszary nr 3, 4) o grubości < 2 μm i zawartości Si – 41,6% at. oraz Ti – 58,4% at., wskazującą na powstanie krzemku typu Ti₅Si₄,
- wewnętrzną (mikroobszary nr 5, 6) również o grubości < 2 μm o małej zawartości Si (ok. 10-16%).

fig. 3			
Mikroobszar	Zawartość pierwiastków, % at.		
	Si	Ti	
1	42,5	57,5	
2	42,6	57,4	
3	2,1	97,9	

Tabela 3. Wyniki analizy składu chemicznego w mikroobszarach 1-3 (rys. 3.) Table 3. Results of chemical composition analysis in microareas 1-3 marked in

Rys. 3. Mikrostruktura warstwy krzemkowej na podłożu tytanu wytworzonej w procesie P3 (tab. 1.)

Fig. 3. The microstructure of silicide coating obtained on titanium during the P3 process (tab. 1.)

W procesie P5 zastosowano fluorek magnezu jako aktywator (2% mas.) i proszek o dużej zawartości krzemu – 47,5% mas. Tlenek aluminium stanowił resztę. Pozostałe warunki procesu były następujące: czas 4 h, temperatura 980°C. Na podstawie badań mikroskopowych ustalono, że wytworzona warstwa ma głębokość od 15,9 do 17,24 µm. Wyniki mikroanalizy składu chemicznego w obszarze styku warstwy z podłożem wykazały dużą zawartość tlenu i tytanu (mikroobszar nr 1 na rys. 5.) co może wskazywać na pojawienie się warstewki tlenku tytanu. Jednocześnie wytworzona warstwa była złożona z dwóch stref:

- wewnętrznej (mikroobszar nr 2 na rys. 5., tab. 5.), zawierającej 43,1% at. Si i 56,9% at. Ti, złożonej prawdopodobnie z krzemku Ti₅Si₄,
- zewnętrznej (mikroobszary nr 3, 4 na rys. 5., tab. 5.), zawierającej od 47 do 57% at. Si i od 42,7 do 52,8% at. Ti.

Rys. 4. Mikrostruktura warstwy krzemkowej tytanu wytworzonej w procesie P4 (tab. 1.)

Fig. 4. The microstruture of silicide coating obtained during the P4 process (tab. 1.)

Tabela 4. Wyniki analizy składu chemicznego w mikroobszarach 1-5 (rys. 4.) Table 4. Results of the chemical composition analysis in microareas 1-5 marked in fig. 4

Milmochazan	Zawartość pierwiastków, % at.		
WIIKTOODSZar	Si	Ti	
1	61,8	38,2	
2	46,2	53,8	
3	41,6	58,4	
4	10,9	89,1	
5	16,1	83,9	

Rys. 5. Mikrostruktura warstwy krzemkowej wytworzonej w procesie P5 (tab. 5.)

Fig. 5. The microstruture of silicide coating obtained during the process marked as P5 (tab. 5.)

Mikroobszar	Zawartość pierwiastków, % at.			
	Si	Ti	O ^s	
1	17,2	34,8	47,9	
2	43,1	56,9	-	
3	57,3	42,7	-	
4	47,2	52,8	-	

Tabela 5. Wyniki analizy składu chemicznego w mikroobszarach 1-4 (rys. 5.) Table 5. Results of the chemical composition analysis in microareas 1-4 marked in fig. 5

Wyniki analizy składu chemicznego w strefie zewnętrznej oraz wyniki analizy składu fazowego (rys. 6.) z powierzchni wskazują na powstanie w strefie zewnętrznej krzemków tytanu typu TiSi lub TiSi₂.

Rys. 6. Dyfraktogram z powierzchni próbki z warstwą krzemkową wytworzoną w procesie P5 (tab. 1.)

Fig. 6. XRD diffraction pattern from surface of the silicide coating obtained during the siliconizing process P5 (tab. 1.)

W ostatnim z prowadzonych procesów (P6, tab. 1.) zastosowano również proszek o dużej zawartości krzemu (48% mas.) i fluorek magnezu jako aktywator (2% mas.) – resztę stanowił tlenek aluminium. Zwiększono czas procesu krzemowania do 8 h w temperaturze 980°C. Ustalono, że głębokość wytworzonej warstwy wynosi od 8,78 do 11,1 µm. Badania mikroskopowe i analiza składu chemicznego w mikroobszarach były podstawą do wyodrębnienia dwóch charakterystycznych stref w warstwie:

- wewnętrznej (mikroobszar nr 1 na rys. 7., tab. 6.), o średniej grubości 4,9 μm,
- zewnętrznej (mikroobszary 2 i 3 na rys. 7., tab. 6.), o średniej grubości 7,23 μm, zawierającej ok. 28-32% at. Si i 64-67% at. Ti.

Analiza układu równowagi fazowej Ti-Si [2] oraz wyników mikroanalizy składu chemicznego wskazuje, że przy zmierzonej zawartości krzemu i tytanu powstaje mieszanina krzemków Ti₃Si oraz Ti₅Si₃.

Rys. 7. Mikrostruktura warstwy krzemkowej wytworzonej w procesie P6 (tab. 1.)

Fig. 7. The microstruture of silicide coating obtained during the P6 process (tab. 1.)

Tabela 6. Wyniki analizy składu chemicznego w mikroobszarach 1-3 (rys. 7.) Table 6. Results of the chemical composition analysis in microareas 1-3 marked in fig. 7

Mikroobszar	Zawartość pierwiastków, % at.		
wirktoouszar	Si	Ti	
1	24,0	76,0	
2	28,2	63,8	
3	32,8	67,2	

4. Podsumowanie

Analiza wyników badań wskazuje na możliwość wytworzenia warstwy krzemkowej na podłożu stopu tytanu metodą kontaktowo-gazową. Ustalono, że parametry procesu silnie oddziałują na grubość i skład chemiczny wytworzonej warstwy. Zastosowanie proszku o małej zawartości krzemu (10% mas., procesy P1-P3) skutkuje powstaniem cienkiej warstwy krzemków (> 5 μ m). Wyniki analizy składu chemicznego mogą wskazywać, że głównymi składnikami fazowymi mikrostruktury mogą być krzemki typu TiSi lub Ti₅Si₄. Wykazano również, że

czas krzemowania z użyciem tego rodzaju proszku (proces P1-P3, tab. 1.) nie wpływa istotnie na głębokość powstającej warstwy krzemkowej.

Zwiększenie zawartości Si w proszku do ok. 48% mas. skutkowało wzrostem głębokości warstwy do 10-15 μ m. Dodatkowo wprowadzenie fluorku AlF₃ jako aktywatora spowodowało powstanie warstwy złożonej ze strefy zewnętrznej o grubości 6,6 μ m, zawierającej prawdopodobnie krzemek TiSi₂ (mikroobszar nr 1, rys. 4.), środkowej zewnętrznej (mikroobszar nr 2, rys. 4.) również o grubości ok. 6 μ m, złożonej z krzemku TiSi lub Ti₅Si₄, środkowej wewnętrznej (mikroobszary nr 3, 4, rys. 4.) – którą stanowią krzemki typu Ti₅Si₄ oraz wewnętrznej (mikroobszar nr 5, rys. 4.). Skład fazowy poszczególnych stref jest zbliżony do warstw uzyskanych przez Cockerhama i Rappa [3]. Zastosowanie fluorku magnezu – przy zbliżonej zawartości Si w proszku skutkuje powstaniem warstwy o mniejszej głębokości i budowie wielostrefowej, złożonej z krzemków typu TiSi, Ti₅Si₄ i TiSi₂.

Badania prowadzono w ramach projektu Iuventus Plus nr IP2011015471 realizowanego w latach 2012-2014.

Literatura

- Baszkiewicz J.: Wpływ implementacji jonów krzemu na odporność korozyjną wybranych stopów metali, OW PW, Prace Naukowe Inżynieria Materiałowa, z. 13, Warszawa 2002.
- [2] Fiore M., Neto F.B., de Farias Azevedo C.R., Assessment of Ti-rich corner of Ti-Si phase diagram using two sublattices to describe the Ti₅Si₃ phase, REM, Int. Eng. J., 70 (2017) 201-207.
- [3] Cockeram B.V., Rapp R.A.: The kinetics of multilayered titanium-silicide coatings grown by the pack cementation method, Metall. Mater. Trans. A, 26 (1995) 777-791.
- [4] Vojtech D., Novak P., Machac P., Mort'anikova M., Jurek K.: Surface protection of titanium by Ti₅Si₃ silicide layer prepared by combination of vapor phase siliconizing and heat treatment, J. Alloys Compounds, 464 (2008) 179-184.
- [5] Subrahmanyam J., Annapurna J.: High temperature cyclic oxidation of aluminide layers on titanium, Oxidation Metals, 26 (1986) 275-285.

THE INFLUENCE OF PACK SILICONIZING CONDITIONS ON THE STRUCTURE OF COATINGS PRODUCED ON TITANIUM

Summary

In the article the results of experimental pack siliconizing of titanium grade 2 alloys were presented. The powders containing low (10 wt. %) and high (48 wt. %) silicon content were used. The aluminium and magnesium fluorides were used as activators. The thickness of silicide coatings produced using the low-Si content powder did not exceed 5 μ m. The use of high Si content pack

enabled to form thick (15 $\mu m)$ multilayer coating formed from TiSi, Ti_5Si_4, Ti_5Si_3 and TiSi_2 silicides.

Keywords: silicide coatings, pack siliconizing, titanium alloys, heat resistant coatings, titanium silicides

DOI: 10.7862/rm.2019.02

Otrzymano/received: 24.02.2019 r. Zaakceptowano/accepted: 27.05.2019 r.