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SINGULARITY ROBUST TRAJECTORY 
GENERATOR FOR ROBOTIC MANIPULATOR 
BASED ON GENETIC ALGORITHM WITH 
DYNAMIC ENCODING OF SOLUTIONS 

In this paper a singularity robust trajectory generator for robotic manipulators is pre-
sented. The generator contains the procedure of solving the inverse kinematics prob-
lem. This issue is defined as an optimization problem, where a genetic algorithm is 
used for optimizing the fitness function. In order to avoid singularity problem, the 
generator is based on the direct kinematics problem. The trajectory generator allows 
to obtain generalized coordinates, velocities and accelerations. Simulation results 
show that the procedure generates a trajectory of manipulator even in kinematics 
singularities. 
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1. Introduction  

One of the basic problems of robotics is generating a desired trajectory of 
manipulators’ motion. The desired trajectory generator contains a procedure of 
solving the inverse kinematics problem (IKP), which enables to calculate gener-
alized coordinates, velocities and accelerations in the manipulator joint space. All 
the variables are necessary to control manipulators because they are the desired 
trajectory of the control system (Fig. 1). However, authors of many publications 
which deal with IKP often consider only the motion from an initial point to a final 
point [1, 2] and do not deal with generation of generalized velocity and accelera-
tion of motion. Some algorithms allow to obtain a solution to the singular IKP [3] 
but they are very complex and applicable to special structures of manipulators 
only. Moreover, the authors are concerned with the problem of generalized coor-
dinates but they do not consider the problem of generalized velocities and accel-
erations. In the articles [4, 5] the authors presented methods based on artificial 
intelligence which allow to obtain generalized coordinates and velocities even in 
singularities. However, a solution to the problem of generalized accelerations has 
not been found due to too large computational complexity of the method. 
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Fig. 1. Schema of manipulator control system with the trajectory generator 

 
Kinematics’ equation of manipulator may be written in a general form as fol-

lows: 

� = ���� (1) 

where: � ∈ �	
 – a vector of position and orientation of manipulator’s end- 

         effector in a frame of reference, which is connected with task  
  space, 
  � ∈ �
 – a vector of generalized coordinates, 
  � ∈ �	 – a vector function, usually non-linear, the structure and parame- 
                  ters of which are known. 
 

 The IKP may be symbolically written as: 

� = ������ (2) 

 Because ���� is non-linear many � give the same �, so the equation (2) may 
have more than one solution. Moreover, the inverse of the function � may not 
exist. Typical disadvantages in the IKP solution are presented graphically in  
Fig. 2. 
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Fig. 2. Typical disadvantages in the IKP solution for a two-link manipulator: a) ambiguous so-
lution, b) singular configuration 

There is a classical method used to solve IKP, in which the inverse of a Ja-
cobian matrix is used. Jacobian matrix is defined as 


��� = �������  (3) 

and depending on the dimensions of the joint space and task space it may be a 
square or rectangular matrix. The IKP solution is based on the numerical solution 
of the equation 

�� = 
����  (4) 

 While solving IKP by inversion of the Jacobian matrix a problem of singu-
larity may occur. This is strictly a mathematical problem which occurs in config-
uration �, in which an order of the Jacobian decreases. The most formal definition 
of singular configuration is as follows [3]: a configuration q in which a rank of the 
geometric Jacobian is less than the dimension of the task space �, which can be 
written as 

�����
���� < ���� (5) 

and is called a singular configuration. 
In literature there are many publications which deal with the application  

of adaptive systems [6, 7] or genetic algorithm (GA) [8, 9] for solving the IKP. 
Especially the second category of methods allows to avoid the problem of singu-
larities. In a very interesting work [10] the authors used continuous GA for trajec-
tory generating. The procedure is singularity robust but only the problem of gen-
eralized coordinates is considered. Renner and Ekárt [11] presented the review of 
applying GA in path planning. Some of the algorithms are singularity robust but 
in the articles only the problem of generalized coordinates generation is presented. 
In recent years, there has been an increase in the number of publications devoted 
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to the IKP. This conclusion is based on the analysis of the number of articles de-
voted to IKP topics in the five-year period of 1997-2006 in one of major bases of 
scientific journals. In the last five years the number of articles has increased by 
about 30%. This is probably due to the fact that despite many attempts, we have 
failed to find general robust  methods for solving the IKP for different manipulator 
structures. 

In this paper the singularity robust trajectory generator for robotic manipula-
tors is presented. It is singularity robust because it is based on the direct kinematics 
problem (DKP). In this method there is no overt information about singularities. 
This trajectory generator allows to obtain generalized coordinates, velocities and 
accelerations. 

2. Optimizing problem formulation  

Let us assume that the manipulator will be non-redundant and � describes 
only the position of the end-effector in the task space ������ (Fig. 3). 
 

 
 
 
 

 
 
 
 
Fig. 3. Schema of manipulator 

 
 Projecting the equation (1) onto the axis of the frame of reference yields sys-
tem of equations which describes the position of manipulator’s end-effector. Cal-
culating its ��� time derivatives yields the following description of the kinematics: 

�� � = ���, … , �� ��,          � = 0,1, … , %,          % = 3 (6) 

Equation (6) constitutes a mathematical model of DKP.  
The IKP consists in calculating generalized coordinates ', velocities '�  and 

accelerations '(  for the desired path and desired velocity of manipulator’s end-
effector in the task space. For this trajectory and velocity in the task space we may 
calculate coordinates ��)� = � = *��, ��, ��+,, projections of velocity ���� = = �� = *���, ���, ���+,, acceleration ���� = �( = *�(�, �(�, �(�+, and acceleration’s 
time derivative ���� = �. = *�.�, �.�, �.�+, onto the axis of the frame of reference 
that is �� �. These variables are connected with �� � by equation (6). 
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The IKP is defined as an optimization problem, where a fitness function (er-
ror function) for each trajectory point defined by (7) is optimized: 

/ = ∑ 1 2�� � − �4� �2�5 6)  (7) 

where: �4� �
 – approximation of �� �, 

  ‖. ‖ – Euclidean norm of a given vector, 
  1  – unit value weight. 
 

 By using (5) we finally obtain the fitness function in the following form 

/��4, �� ,9 �( ,9 �.	9 � = ∑ 1 2�� � − ���4,… , �4� ��2
�5

 6)  (8) 

where: �4� � – approximation of �� �. 

The optimization is carried out by a procedure based on the GA [11-15]. The 
GA searches for a minimum of the fitness function towards �4� � and values of 
���4,… , �4� �� are calculated from DKP. The presence of terms �4, �	�9  and �( 	9  in the 
fitness function is natural because the solution of the IKP consists of generalized 
coordinates, velocities and accelerations. The term �.	9  in the fitness function makes 
that acceleration �( 	9  is smooth.  

The idea of solving the problem results from the following reason. It is  
a well-known fact that if the desired trajectory in task space is a continuous func-
tion of time, the IKP has a solution for each moment of time but it may be ambig-
uous or non-continuous (Fig. 4). However, it is known that in the physical system 
continuous changes of coordinates, velocities and accelerations in task space are 
associated with continuous changes of coordinates, velocities and accelerations in 
joint space. A physical point cannot have two or more different coordinates, ve-
locities and accelerations at the same time. Furthermore, coordinates, velocities or 
accelerations of a physical object belong to a bounded set. In other words, non-
continuous solutions are caused by a mathematical description, not by specificity 
of a real object. 

According to the above reasoning, there are practically not very large changes 
(Fig. 4b) of generalized coordinates, velocities and accelerations even in singular-
ities, and solutions of IKP in neighbouring moments of time are similar (Fig. 4a). 
Therefore, we can assume the highest changes of generalized coordinates, veloc-
ities, accelerations and acceleration’s time derivatives, i.e.: Δ';<=>, Δ'�;<=>, 
Δ'(;<=> and Δ'.;<=> respectively, where ? = 1, 2, … ,� denotes manipulator’s 
joint. Their value may be associated with properties of manipulator or with con-
straints imposed by the user. Therefore, the GA may be used for searching a solu-
tion in a certain neighbourhood of the previous solution only. The neighbourhood 
is defined by the highest changes in parameters of motion. In the centre of this  
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region there is the previous solution. It ensures that the trajectory of manipulator 
will be continuous even in singularities because the solution is constrained (in this 
method there are not singularities, the expression „singularities” is used symboli-
cally to define a region in which the singularities exists in classical methods). In 
other words, the GA searches the solution in a certain small region of search, and 
the region is changing in time and, in a way, moving in the space over the curve 
that is the appropriate solution. The current encoding of the population of solu-
tions along the trajectory has been referred to by the author as dynamic encoding. 
Compared to static encoding performed for the whole task space, the dynamic 
approach allows for greater accuracy and smoothness of the solutions. This ap-
proach allows to obtain the applicable desired trajectory of the manipulator. It 
should be added that the procedure requires the initial condition for �4. The initial 
conditions for �	�9 , �( 	9  and �.	9  will practically be zero. For each trajectory point  
a trajectory error AB��� and a velocity error AC��� in task space are defined as: 

AB��� = ‖� − �4‖ (9) 

AC��� = ‖�� ‖ − 2�	�92 (10) 

where � – a number of path points. 

 

 
Fig. 4. The idea of IKP solution: a) physically realizable solution, b) physically unrealistic solution 
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 Moreover, quality ratings are defined as: 

/B = ℎE∑ *AB���+�F  (11) 

/C = ℎE∑ *AC���+�F  (12) 

where: � – a number of path points, 
  ℎ – the time step. 
This allows to evaluate quality of the solution. 

3. Genetic algorithm implementation 

In the optimizing problem the GA is used, which contains the following op-
erations: encoding, initialization, evaluation, selection, crossover and mutation. 
The GA carries out operations on population of chromosomes which consist of 
genes. For a given path point	�, encoding, initialization and evaluation should be 
carried out. After that, it should be checked whether the fitness is acceptable. If 
the fitness is sufficient, the result for a given path point is generated. If the fitness 
is unsatisfactory, selection, crossover and mutation are carried out. Next the eval-
uation is carried out and the cycle is repeated. Based on the numerical tests one 
change was made in the basic GA., namely, if the value of the fitness function of 
the best chromosome was larger than the prescribed threshold value /, and it did 
not decrease during the optimization the mutation probability is temporarily in-
creased. It improves optimization results. 

In the first operation i.e. encoding, permissible solutions are encoded in the 

form of vectors G;
  which store values of variables ';

� �. For example, if the varia-
ble '� ∈ 〈'�<IJ, '�<=>〉, a given set will be digitized with a constant step and the 
vector will store discrete values from the set. A number of discrete values depends 
on the number of genes in the chromosome which is allotted to encoding values 
of a variable. For example, if a number of genes allotted to encoding '� is equal 
to L�

), the vector will store 2MN
O
 digitized value of '�. Values of variables are en-

coded in chromosomes. The binary system is used for encoding; therefore, each 
gene may store values 0 or 1. It is shown in Fig. 5. 

 

 
Fig. 5. Manner of encoding 
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In genes from 1 to L�) the discrete value of a generalized coordinate '� is 
encoded. In the following genes discrete values of generalized coordinates, veloc-
ities, accelerations and accelerations’ time derivatives are encoded. Therefore,  
a chromosome is a vector which is a candidate for representation solution of the 
IKP. For example, if a chain of genes which is allotted to encoding '� has a form 
of |1|0|0|1|1|, then the part of chromosome is associated with the value which is 
stored in the vector G�) on position 1 ∙ 2) + 0 ∙ 2� + 0 ∙ 2� + 1 ∙ 2� + 1 ∙ 2R = 25. 

A number of genes depends on the desired precision of solution and manip-
ulator’s degrees of freedom. Each chromosome has a number of genes descri- 
bed as: 

L = ∑ ∑ L; 
;6�5 6)  (13) 

where: L;  – a number of genes allotted to encoding ��� time derivatives of ��� 
                     generalized coordinates. 
 

 During initialization an initial population with even number of the chromo-
some T is generated. Values 0 or 1are randomly generated and stored in genes. 

In the next operation i.e. evaluation, the degree of adaptation to problem is 
checked. Information about them is taken from the fitness function /��4, �� ,9 �( ,9 �.	9 �. 
If a value of fitness function for a given chromosome is lower, then the degree of 
chromosome adaptation to minimization fitness function is larger. With the aim 
of calculating the value of fitness function, values of generalized coordinates, ve-
locities, accelerations and acceleration’s time derivatives should be decoded. 
Then, these values first should be used for determining ���4,… , �4� �� from the 
DKP, and next the value of fitness function /��4, �� ,9 �( ,9 �.	9� for each chromosome 
should be calculated. A chromosome for which the fitness function has the lowest 
value is the best chromosome in a given group. 

In order to create a new generation of chromosomes, a parental pool is se-
lected from the current population. In order to do that, the tournament selection is 
used. In this method a sub-group of chromosomes is randomly chosen (with rep-
etition) from population. In the articles [12, 14], sub-groups have 2 or 3 chromo-
somes, but results of numerical tests show that the procedure converges much 
faster if the size of the sub-group � is dependent on the size of population T in 
this way: 

� = �UV���0.6√T + 0.4� (14) 

Then the chromosomes from the sub-group are evaluated and next one chro-
mosome is selected and added to the parental pool. This selection should be per-
formed T times. Then, the chromosomes from the parental pool are randomly 
coupled. 
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New chromosomes are created by using one-point crossover with the proba-
bility Z�[� = 1. A crossover point for each pair of parents is generated randomly. 
New chromosomes have features like their parents because offsprings are their 
combination. In this way, the next generation of chromosomes is created from the 
parental pool. After that, an old population is replaced by a new population. Fi-
nally, mutation is carried out. In this operation values stored in the genes change 
from 1 to 0 or from 0 to 1. The mutation occurs with the probability �. 

4. Simulation results 

In this chapter kinematics of a two-degrees-of-freedom planar manipulator 
with rotational joints, which is schematically presented in Fig. 6, is considered. It 
is assumed that movement took place in the �\ plane. 

 
 

 
 
 
 

 
 
 
Fig. 6. The two-degrees-of-freedom planar manipulator with rota-
tional joints 

 
Point C is chosen as the particular manipulator’s point. It is also referred to 

as an end-effector. Its coordinates are described by the system of equations: 

]�^ = _�[U`'� + _�[U`'�\^ = _�`��'� + _�`��'�  (15) 

where: �^, \^ – coordinates of the point C, 
  _� = 0.22 m, _� = 0.22 m – lengths of manipulator’s link 1 and 2, 
  '�, '� – joint angles of link 1 and 2 (generalized coordinates). 
 

 By calculating time derivatives (15), we obtain equations of velocities,  
accelerations and accelerations’ time derivatives: 

]��^ = −_�'��`��'� − _�'��`��'�\�^ = _�'��[U`'� + _�'��[U`'�  (16) 

a�(^ = −_�'(�`��'� − _�'���[U`'� − _�'(�`��'� − _�'���[U`'�\(^ = _�'(�[U`'� − _�'���`��'� + _�'(�[U`'� − _�'���`��'�  (17) 
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bcd
ce �.^ = _�'���`��'� − 3_�'��'(�[U`'� − _�'.�`��'� ++_�'���`��'� − 3_�'��'(�[U`'� − _�'.�`��'�\.^ = −_�'���[U`'� − 3_�'��'(�`��'� + _�'.�[U`'� +−_�'���[U`'� − 3_�'��'(�`��'� + _�'.�[U`'�

 (18) 

 For this manipulator Jacobian of velocity has the form: 


 = f−_�`��'� −_�`��'�_�[U`'� _�[U`'� g (19) 

whose determinant has the form: 

�Ah�i� = _�_�`���'� − '�� (20) 

 Therefore, singularity occurs when '� = '� + �j, but practically � = 0. 
The highest changes of generalized coordinates, velocities, accelerations and 

accelerations’ time derivatives are supposed as .: Δ';<=> = ±0.005 rad, Δ'�;<=> = ±0.005 rad/s, Δ'(;<=> = ±0.01 rad/s2, Δ'.;<=> = ±0.05 rad/s3. Num-
bers of genes for encoding values of variables are supposed as L;) = 3, L;� = 4, L;� = L;� = 5. We set the value of the population size as T = 600, /, = 5 ∙ 10�l, 
and the value of the mutation probability as � = 0.05, which is temporarily in-
creased ten times if fitness function did not decrease during the optimization. 

In order to test the method, simulation is performed. We assume generalized 
coordinates '��h� and '��h� so generalized velocities, accelerations and accelera-
tions’ time derivatives are known. Generalized coordinates are selected in such  
a way that the case of singularity in the IKP ('� = '� – regions marked by circles 
in Fig. 7) occurs several times. 

 

 

Fig. 7. Generalized coordinates and regions in which there occurs the case '� = '� 

 
 Based on the relations (15)-(18), �� � is calculated, which means that map-
ping of the trajectories in the joint space into the trajectory in the task space is well 
known. Thus, the ideal solution to which the solution obtained by the proposed 
method is compared is known. Then, the IKP was solved. In Fig. 8 corresponding 
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supposed generalized movement parameters and their approximation calculated 
by the singularity robust trajectory generator are presented. 
 

 

Fig. 8. The supposed generalized movement parameters and their approximation  
calculated by a trajectory generator 

 
Particularly interesting are approximations of generalized movement param-

eters in cases when '� ≈ '�. In singularities 1, 2 and 3 the approximations are 
very smooth. In singularities 4, 5 and 6 (h~36	s, 43	s, 50	s) approximations of 
generalized accelerations are oscillating. It is caused by very small values of  
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generalized velocities. When '� ≈ '� and generalized velocities are nearly zero, 
then two possible solutions of IKP are very similar, and the procedure generates 
the trajectory with small oscillations. 

In order to evaluate the solution of IKP, path error AB��� (Fig. 9) and velocity 
error AC��� (Fig. 10) are calculated. Path error defined by (9) is smaller than 0.001 
m, and velocity error defined by (10) always belongs to the range (–0.001; 0.001) 
m/s. The quality ratings for ℎ = 0.01 have values: /B = 1.59 ∙ 10�R m,  /C = 1.14 ∙ 10�R m/s. Such errors and the quality of solution are acceptable and 
this given trajectory may be used in the movement control of manipulator. 

In the case of practical applications of a trajectory generator, a slightly dif-
ferent approach than the one presented in subchapter 4.1. Test of trajectory  
generator is required. In practice, a characteristic point C which belongs to the 
manipulator end-effector is chosen and it is defined how it should move within 
the workspace. For this purpose, the trajectory of the point and its velocity in the 
workspace is determined. Then, with the use of kinematic equations, the coordi-
nates of the point C with regard to the frame of reference and its subsequent de-
rivatives, that is, �^, \^, ��^, \�^, �(^, \(^, �.^ and \.^ are set. The final stage is to 
produce the IKP solution with the use of a trajectory generator. 

Let us assume the path of the point C for the manipulator shown in Fig. 7 be 

q̂ ��^ , \^� = 0 (21) 

 The velocity of the point C in the �\ reference frame put in vector nota- 
tion is 

r^ = f��^\�^g (22) 

whereas its value is defined by the equation: 

s^ = E���^�� + �\�^�� (23) 

 

 

Fig. 9. Path error of the point C 
 

 

Fig. 10. Velocity error of the point C 
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In order to fulfil the velocity of the point C, the velocity vector must be tan-
gent to the trajectory, thus the following equation must be satisfied: 

L���q̂ r^ = 0 (24) 

 Upon taking into consideration the equations (21) and (22), it shall have the 
form of: 

t�uv�wv
�uv�xvy f��^\�^g = 0 (25) 

 By determining qw = �uv�wv i qx = �uv�xv the equation: 

qw��^ + qx\�^ = 0 (26) 

was obtained. By solving the equation systems (23) and (26), the equation: 

bcd
ce��^ = ∓ u{|v

}u~��u{�
\�^ = ± u~|v

}u~��u{�
 (27) 

was obtained. Solving the system of differential equations (27) enables to deter-
mine how velocity vector components and the coordinates of the point C change. 
Moreover, it enables to determine how higher derivatives of motion parameters 
for the defined path and velocity values of this point change. 

In the following example, a trajectory in the form of an ellipse is assumed: 

q̂ = �wv�wO� �� + �xv�xO� �� − 1 = 0 (28) 

for which let qw = 2 wv�wO��  and qx = 2 xv�xO�� , and it is assumed that �) = 0,  \) = 0.22, � = 0.16, � = 0.22. The velocity value was determined as: 

s^ = |v��~���w5*�������+ − |v��~���w5*��������+ (29) 

where: s^
�w = 0.3 m/s – the maximum motion velocity, 
  [ = 3 s–1 – constant responsible for the velocity curve gradient during  
                          accelerating and stopping. 
 

 Having assumed the initial conditions of the trajectory as �^�0� = 0.16 m 
and \^�0� = 0.22 m, the equation system (27) was solved, considering the  
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equations (28) and (29). As a result, the kinematic motion parameters of the  
point C, that is, �^, \^, ��^, \�^, �(^, \(^, �.^ and \.^ (Fig. 11a-d) were obtained. 
Then, by using the afore-discussed trajectory generator, which uses the kinematic 
equations (15)-(18), the IKP solution was obtained (Fig. 11f-h). 

 

 

Fig. 11. The IKP solution with the use of a trajectory generator: a-d) kinematic motion parameters 
of the point C, e) point C path, f-h) the IKP solution 

 
 The chart in Fig. 11f shows that around 10 s we have situation when the an-
gles of rotation of the manipulator joints are equal. This means that in the case of 
the classical approach, kinematic singularities would occur, whereas due to the 
trajectory generator which is free from singularities, arriving at the IKP solution 
became possible. 

5. Conclusions 

In this paper a trajectory generator for robotic manipulators is presented. This 
generator does not need the inverse of a Jacobian matrix, so it is singularity robust. 
Continuity of trajectory is assured by limiting changes of generalized coordinates, 
velocities, accelerations and accelerations’ time derivatives. The IPK is formu-
lated as an optimization problem because in this approach we may use the DKP 
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only. By limiting the region in which the optimization is carried out, the time of 
solving the IKP decreases. 

The theoretical discussion is confirmed by an example in which generalized 
coordinates, velocities and accelerations of a two-degrees-of-freedom manipula-
tor are generated correctly even in singularities. To the authors’ knowledge, it is 
the first singularity robust trajectory generation algorithm that can be applied to 
determine generalized coordinates, velocities and accelerations of the manipulator 
in singularities.    

This algorithm may easily be applied to IKP of other manipulators, also re-
dundant manipulators. In such cases the fitness function should be appropriately 
defined. 
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ODPORNY NA OSOBLIWO ŚCI GENERATOR TRAJEKTORII 
ROBOTA MANIPULACYJNEGO OPIERAJ ĄCY SIĘ  
NA ALGORYTMIE GENETYCZNYM Z DYNAMICZNYM 
KODOWANIEM ROZWI ĄZAŃ 

S t r e s z c z e n i e 

W niniejszym artykule przedstawiono generator trajektorii robota manipulacyjnego odporny 
na osobliwości kinematyki. Generator zawiera procedurę rozwiązywania zadania odwrotnego kine-
matyki. Problem ten jest zdefiniowany jako problem optymalizacyjny, w którym algorytm gene-
tyczny służy do optymalizacji funkcji dopasowania opierającej się na błędzie rozwiązania zadania. 
Aby wyeliminować problem osobliwości, generator wykorzystuje zadanie proste kinematyki.  
Generator trajektorii umożliwia uzyskanie uogólnionych współrzędnych, prędkości i przyspieszeń 
manipulatora. Wyniki symulacji wskazują, że opracowana procedura generuje trajektorię manipu-
latora nawet w przypadku wystąpienia osobliwości kinematyki. 
 

Słowa kluczowe: zadanie odwrotne kinematyki, algorytm genetyczny, osobliwości, robot manipu-
lacyjny, generator trajektorii 
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