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SINGULARITY ROBUST TRAJECTORY
GENERATOR FOR ROBOTIC MANIPULATOR
BASED ON GENETIC ALGORITHM WITH
DYNAMIC ENCODING OF SOLUTIONS

In this paper a singularity robust trajectory ganer for robotic manipulators is pre-
sented. The generator contains the procedurevifigadhe inverse kinematics prob-
lem. This issue is defined as an optimization prohlwhere a genetic algorithm is
used for optimizing the fitness function. In orderavoid singularity problem, the
generator is based on the direct kinematics praobléra trajectory generator allows
to obtain generalized coordinates, velocities araklgrations. Simulation results
show that the procedure generates a trajectoryasfipnlator even in kinematics
singularities.

Keywords: inverse kinematics, genetic algorithm, singulanibhotic manipulator,
trajectory generator

1. Introduction

One of the basic problems of robotics is generagirdgsired trajectory of
manipulators’ motion. The desired trajectory getmraontains a procedure of
solving the inverse kinematics problem (IKP), whatables to calculate gener-
alized coordinates, velocities and acceleratiorisémmanipulator joint space. All
the variables are necessary to control manipuldtecause they are the desired
trajectory of the control system (Fig. 1). Howevathors of many publications
which deal with IKP often consider only the motioom an initial point to a final
point [1, 2] and do not deal with generation of g@tized velocity and accelera-
tion of motion. Some algorithms allow to obtainodusion to the singular IKP [3]
but they are very complex and applicable to spestiaictures of manipulators
only. Moreover, the authors are concerned withpttodlem of generalized coor-
dinates but they do not consider the problem otgaized velocities and accel-
erations. In the articles [4, 5] the authors présgmethods based on artificial
intelligence which allow to obtain generalized ainates and velocities even in
singularities. However, a solution to the probldngeneralized accelerations has
not been found due to too large computational ceriy of the method.

1 Corresponding author/autor do korespondencii: rP@ierlak, Politechnika Rzeszowska, 12
Powstacow Warszawy Ave., 35-959 RzeszOw, tel.: (17) 868185mail: pgierlak@prz.edu.pl
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Fig. 1. Schema of manipulator control system wi trajectory generator

Kinematics’ equation of manipulator may be writtera general form as fol-
lows:

x = f(q) (1)

where:x € R"— a vector of position and orientation of manipoitat end-
effector in a frame of reference, whictt@nected with task
space,
q € R™ — a vector of generalized coordinates,
f € R™ — a vector function, usually non-linear, the stuoe and parame-
ters of which are known.

The IKP may be symbolically written as:

q=1"( (2)

Becaus¢(q) is non-linear many give the same, so the equation (2) may
have more than one solution. Moreover, the invefsihe functionf may not
exist. Typical disadvantages in the IKP solutioe aresented graphically in
Fig. 2.
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Fig. 2. Typical disadvantages in the IKP solutiond two-link manipulator: a) ambiguous so-
lution, b) singular configuration

There is a classical method used to solve IKP,hitiwthe inverse of a Ja-
cobian matrix is used. Jacobian matrix is defined a

_ @
J(@) = L2 3)

and depending on the dimensions of the joint spacktask space it may be a
square or rectangular matrix. The IKP solutiondsdd on the numerical solution
of the equation

q=J"'% @)

While solving IKP by inversion of the Jacobian mat problem of singu-
larity may occur. This is strictly a mathematiceblplem which occurs in config-
urationg, in which an order of the Jacobian decreasesnids formal definition
of singular configuration is as follows [3]: a canfration q in which a rank of the
geometric Jacobian is less than the dimensioneofabtk spac&, which can be
written as

rank(J(q)) < dimT (5)

and is called a singular configuration.

In literature there are many publications whichlde#h the application
of adaptive systems [6, 7] or genetic algorithm §G&\ 9] for solving the IKP.
Especially the second category of methods alloves/tad the problem of singu-
larities. In a very interesting work [10] the authased continuous GA for trajec-
tory generating. The procedure is singularity rotoug only the problem of gen-
eralized coordinates is considered. Renner and EK&rpresented the review of
applying GA in path planning. Some of the algorighane singularity robust but
in the articles only the problem of generalizedrdiotates generation is presented.
In recent years, there has been an increase mutneer of publications devoted
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to the IKP. This conclusion is based on the anglgsthe number of articles de-
voted to IKP topics in the five-year period of 198006 in one of major bases of
scientific journals. In the last five years the memnof articles has increased by
about 30%. This is probably due to the fact thapide many attempts, we have
failed to find general robust methods for soluing IKP for different manipulator
structures.

In this paper the singularity robust trajectory @extor for robotic manipula-
tors is presented. It is singularity robust becatisdased on the direct kinematics
problem (DKP). In this method there is no overbmfiation about singularities.
This trajectory generator allows to obtain geneealicoordinates, velocities and
accelerations.

2. Optimizing problem formulation

Let us assume that the manipulator will be non-nednt andx describes
only the position of the end-effector in the tapkeex, x,x3 (Fig. 3).

end-effector

Iinky

" jointm

. a4 o
/»’ """" Fig. 3. Schema of manipulator

Projecting the equation (1) onto the axis of tiage of reference yields sys-
tem of equations which describes the position afimaator's end-effector. Cal-
culating itsit" time derivatives yields the following descriptiofithe kinematics:

x® =f£(q,..,qV), i=01,..,p, p=3 (6)

Equation (6) constitutes a mathematical model oPDK

The IKP consists in calculating generalized coatiing, velocitiesqg and
accelerationgj for the desired path and desired velocity of malaifor's end-
effector in the task space. For this trajectoryagidcity in the task space we may
calculate coordinates® = x = [x;, x,, x3]7, projections of velocity® =
=k = [%;, X,, %3]7, accelerationx® = ¥ = [¥,, %,, ¥3]” and acceleration’s
time derivativex®® = ¥ = [¥;, ¥,, ¥3]7 onto the axis of the frame of reference
that isx(®. These variables are connected with by equation (6).
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The IKP is defined as an optimization problem, vehefitness function (er-
ror function) for each trajectory point defined @@y is optimized:

E =S owilx® 20| )

where: (¥ — approximation ok®,
||. || = Euclidean norm of a given vector,
w; — unit value weight.

By using (5) we finally obtain the fitness functim the following form

£@4.84) =20 ,wilx® - £@...a0)|’ (®)
where:g® — approximation ofy®.

The optimization is carried out by a procedure dasethe GA [11-15]. The
GA searches for a minimum of the fitness functiowardsg® and values of
£(@,..,q®) are calculated from DKP. The presence of tegmg andg in the
fitness function is natural because the solutiotheflKP consists of generalized
coordinates, velocities and accelerations. The ﬁerimthe fitness function makes
that acceleratiofj is smooth.

The idea of solving the problem results from th#ofeing reason. It is
a well-known fact that if the desired trajectoryjtaisk space is a continuous func-
tion of time, the IKP has a solution for each motr@rtime but it may be ambig-
uous or non-continuous (Fig. 4). However, it is\wndhat in the physical system
continuous changes of coordinates, velocities aedlarations in task space are
associated with continuous changes of coordinagdgcities and accelerations in
joint space. A physical point cannot have two orentifferent coordinates, ve-
locities and accelerations at the same time. Furtbee, coordinates, velocities or
accelerations of a physical object belong to a dedrset. In other words, non-
continuous solutions are caused by a mathematisalrghtion, not by specificity
of a real object.

According to the above reasoning, there are prabtinot very large changes
(Fig. 4b) of generalized coordinates, velocitied accelerations even in singular-
ities, and solutions of IKP in neighbouring momeoit§ime are similar (Fig. 4a).
Therefore, we can assume the highest changes efajized coordinates, veloc-
ities, accelerations and acceleration’s time déxies, i.e.:Aqjmax, AGjmax,
Adjmax andAg;yax respectively, wherg = 1,2,...,m denotes manipulator’s
joint. Their value may be associated with propsroéémanipulator or with con-
straints imposed by the user. Therefore, the GA beaysed for searching a solu-
tion in a certain neighbourhood of the previousisoh only. The neighbourhood
is defined by the highest changes in parametersadion. In the centre of this
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region there is the previous solution. It ensuhes the trajectory of manipulator
will be continuous even in singularities becausesthiution is constrained (in this
method there are not singularities, the expresgimgularities” is used symboli-
cally to define a region in which the singularitedsts in classical methods). In
other words, the GA searches the solution in aaresgmall region of search, and
the region is changing in time and, in a way, mgvimthe space over the curve
that is the appropriate solution. The current eimgpdf the population of solu-
tions along the trajectory has been referred tthbyauthor agynamic encoding.
Compared tastatic encoding performed for the whole task space, the dynamic
approach allows for greater accuracy and smoothofefge solutions. This ap-
proach allows to obtain the applicable desirecettajry of the manipulator. It
should be added that the procedure requires ttial iodbndition forq. The initial
conditions forg, § andq will practically be zero. For each trajectory poin
a trajectory erroep (k) and a velocity errog, (k) in task space are defined as:

ep(k) = llx — x| 9)
ey (k) = |lxIl — ||| (10)

wherek — a number of path points.
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Fig. 4. The idea of IKP solution: a) physically lizable solution, b) physically unrealistic solutio
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Moreover, quality ratings are defined as:

Ep = hy/X[ep (k)] (11)
Ey = hyXiley (K)]? (12)

where: k — a number of path points,
h — the time step.
This allows to evaluate quality of the solution.

3. Genetic algorithm implementation

In the optimizing problem the GA is used, which tams the following op-
erations: encoding, initialization, evaluation,es¢ion, crossover and mutation.
The GA carries out operations on population of olesomes which consist of
genes. For a given path poltencoding, initialization and evaluation should be
carried out. After that, it should be checked whketihe fitness is acceptable. If
the fitness is sufficient, the result for a giveitppoint is generated. If the fitness
is unsatisfactory, selection, crossover and muiaiie carried out. Next the eval-
uation is carried out and the cycle is repeatedeBan the numerical tests one
change was made in the basic GA., namely, if ttheevaf the fitness function of
the best chromosome was larger than the presdtipeshold valué and it did
not decrease during the optimization the mutatiabability is temporarily in-
creased. It improves optimization results.

In the first operation i.e. encoding, permissil&gons are encoded in the

form of vectorsQ]"- which store values of variablq]g). For example, if the varia-

bleq; € {(q1min, 91max), @ given set will be digitized with a constantpséed the
vector will store discrete values from the set.ulvtber of discrete values depends
on the number of genes in the chromosome whiclidtteal to encoding values
of a variable. For example, if a number of gen&stted to encoding; is equal

to g?, the vector will stor@9? digitized value ofy;. Values of variables are en-
coded in chromosomes. The binary system is usedrfooding; therefore, each
gene may store values 0 or 1. It is shown in Fig. 5

~
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Fig. 5. Manner of encoding
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In genes from 1 tg? the discrete value of a generalized coordimgtés
encoded. In the following genes discrete valuegeokralized coordinates, veloc-
ities, accelerations and accelerations’ time déxiea are encoded. Therefore,
a chromosome is a vector which is a candidatedprasentation solution of the
IKP. For example, if a chain of genes which ist#dld to encoding; has a form
of [1|0]|0|1|1]|, then the part of chromosome iscéessadl with the value which is
stored in the vecta? on positionl - 2° + 021+ 022 +1-23 + 1-2% = 25.

A number of genes depends on the desired preai$isalution and manip-
ulator's degrees of freedom. Each chromosome hasmeer of genes descri-
bed as:

g=%0 S g (13)

Where:g;'- — a number of genes allotted to encodiffgtime derivatives oft"
generalized coordinates.

During initialization an initial population withven number of the chromo-
someH is generated. Values 0 or lare randomly geneeatddstored in genes.

In the next operation i.e. evaluation, the degrfeadaptation to problem is
checked. Information about them is taken from ttres functiorE(ﬁ, q, 66)
If a value of fitness function for a given chromosois lower, then the degree of
chromosome adaptation to minimization fitness fiomcts larger. With the aim
of calculating the value of fitness function, vadu generalized coordinates, ve-
locities, accelerations and acceleration’s timeivdérves should be decoded.
Then, these values first should be used for detengif (g, ..., §¥) from the

DKP, and next the value of fithness functiﬁﬁﬁ,fiﬁ,ﬁ) for each chromosome
should be calculated. A chromosome for which ttreefis function has the lowest
value is the best chromosome in a given group.

In order to create a new generation of chromosomgmrental pool is se-
lected from the current population. In order tatloiat, the tournament selection is
used. In this method a sub-group of chromosomesnidomly chosen (with rep-
etition) from population. In the articles [12, 14\b-groups have 2 or 3 chromo-
somes, but results of numerical tests show thaptbeedure converges much
faster if the size of the sub-groups dependent on the size of populatinn
this way:

r= round(0.6\/ﬁ + 0.4) (24)

Then the chromosomes from the sub-group are ewalw@atd next one chro-
mosome is selected and added to the parental Poisl selection should be per-
formed H times. Then, the chromosomes from the parental @@ randomly
coupled.
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New chromosomes are created by using one-poinsaves with the proba-
bility P(c) = 1. A crossover point for each pair of parents isegated randomly.
New chromosomes have features like their parentause offsprings are their
combination. In this way, the next generation abomosomes is created from the
parental pool. After that, an old population islaegd by a new population. Fi-
nally, mutation is carried out. In this operatiadues stored in the genes change
from 1 to O or from 0O to 1. The mutation occurshatte probabilitym.

4. Simulation results

In this chapter kinematics of a two-degrees-ofdm®a planar manipulator
with rotational joints, which is schematically peesed in Fig. 6, is considered. It
is assumed that movement took place indp@lane.

Ye

Fig. 6. The two-degrees-of-freedom planar manipulatith rota- A

tional joints

Point C is chosen as the particular manipulatooistp It is also referred to
as an end-effector. Its coordinates are descripetebsystem of equations:

{xc = lycosqq + l,c0sq,

Ve = lisingy + 1;sing, (15)

where: x., y. — coordinates of the point C,
[, =0.22 m,l, = 0.22 m — lengths of manipulator’s link 1 and 2,
q1, 9> —joint angles of link 1 and 2 (generalized cooaties).

By calculating time derivatives (15), we obtainuations of velocities,
accelerations and accelerations’ time derivatives:

{xc = —l14,5inq, — lq;sing, (16)
Ve = liqic05q; + 134,054,

{55'6 = —l,§ysing, — 115112005(11 — l,G,sing, — leZZCOSCIZ 17)
Ve = liGicosqy — l1‘?%5infh + [;Gzc08q; — leZZSinQZ
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X¢ = Lig3sing; — 31,G1Gycosqy — LGy sing; +

+1,G3sing, — 31,G3G,c08q, — 1,4, sing, 1
Lo ehs dac0s (18)
V¢ = —ligicosqy — 311414, Sing, + ;G cosqq +
—1,45c05q; — 313G, G,Sing, + 1,G,c08q;
For this manipulator Jacobian of velocity hasftren:
_[~lysing, —l;sing,
J= [ 1€0sq;  lcosq, (19)
whose determinant has the form:
det(J) = lilysin(qy — q2) (20)

Therefore, singularity occurs whep = g, + nm, but practicallyn = 0.

The highest changes of generalized coordinatescitiels, accelerations and
accelerations’ time derivatives are supposed adqjyax = +£0.005 rad,
AGjmax = +0.005 rad/sAGjyax = +£0.01rad/$, Agjy4x = £0.05 rad/s. Num-
bers of genes for encoding values of variablessapposed ag}’ =3, g} =4,
g7 = g} = 5. We set the value of the population sizéfas 600, E; = 5- 107,
and the value of the mutation probabilityras= 0.05, which is temporarily in-
creased ten times if fitness function did not daseeduring the optimization.

In order to test the method, simulation is perfatm&e assume generalized
coordinateg; (t) andg, (t) so generalized velocities, accelerations and exzel
tions’ time derivatives are known. Generalized domates are selected in such
a way that the case of singularity in the IKR € g, — regions marked by circles
in Fig. 7) occurs several times.

0 5 10 15 20 26 30 35 40 4 S0

Fig. 7. Generalized coordinates and regions in kwthiere occurs the cage = g,

Based on the relations (15)-(1&f? is calculated, which means that map-
ping of the trajectories in the joint space inte ttajectory in the task space is well
known. Thus, the ideal solution to which the santobtained by the proposed
method is compared is known. Then, the IKP wasesblin Fig. 8 corresponding
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supposed generalized movement parameters andaghmioximation calculated
by the singularity robust trajectory generator @nesented.

a)

9, q, Irad)

b)

9z, q, [rad]

4,, G, [radss]

., G, [radss]

G,, G, [rads?] §,, G, [rad/s?

S . S
0 5 10 15 20 25 30 35 40 45 50

Fig. 8. The supposed generalized movement parasnatel their approximation
calculated by a trajectory generator

Particularly interesting are approximations of gafized movement param-
eters in cases whep = q,. In singularities 1, 2 and 3 the approximations ar
very smooth. In singularities 4, 5 and %6-86 s,43 s,50 s) approximations of
generalized accelerations are oscillating. It issea by very small values of
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generalized velocities. When =~ q, and generalized velocities are nearly zero,
then two possible solutions of IKP are very simikamnd the procedure generates
the trajectory with small oscillations.

In order to evaluate the solution of IKP, path eex(k) (Fig. 9) and velocity
errorey (k) (Fig. 10) are calculated. Path error defined Byg8maller than 0.001
m, and velocity error defined by (10) always bekmgthe range (-0.001; 0.001)
m/s. The quality ratings foih = 0.01 have values:Ep = 1.59-10"* m,

E, = 1.14-10~* m/s. Such errors and the quality of solution ax@eptable and
this given trajectory may be used in the movementrol of manipulator.

In the case of practical applications of a trajacgenerator, a slightly dif-
ferent approach than the one presented in subchdpteTest of trajectory
generator is required In practice, a characteristic point C which bekong the
manipulator end-effector is chosen and it is defihew it should move within
the workspace. For this purpose, the trajectohefpoint and its velocity in the
workspace is determined. Then, with the use ofrketéec equations, the coordi-
nates of the point C with regard to the frame &énence and its subsequent de-
rivatives, that isx., yc, X¢, Ve, Xc, Ve, Xc andy. are set. The final stage is to
produce the IKP solution with the use of a trajectgenerator.

Let us assume the path of the point C for the maaipr shown in Fig. 7 be

fe(xe,ye) =0 (21)
The velocity of the point C in they reference frame put in vector nota-

tionis

ve =y @

whereas its value is defined by the equation:

ve =/ (Hc)? + (¥e)? (23)

E

0.

[h]

0 5 10 15 20 25 30 35 40 45 50
Fig. 9. Path error of the point C
@ A
‘e 0.001-
L et
0.0 +—+rrrrrrrrrr e

0 5 10 15 20 25 30 35 40 45 50

Fig. 10. Velocity error of the point C
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In order to fulfil the velocity of the point C, theslocity vector must be tan-
gent to the trajectory, thus the following equatmuast be satisfied:

gradfcve =0 (24)

Upon taking into consideration the equations @1id (22), it shall have the
form of:

afc dfc)[*c] _
[5xc aJ/c] [yc] =0 (25)
By determiningf, = % i fy = Z—Jf/c the equation:
C c
feXc + fyyC =0 (26)

was obtained. By solving the equation systems §28)(26), the equation:

fyve

fZ+fy

. fxVc
ye=1%

l /f;?+fy2
was obtained. Solving the system of differentialagtpns (27) enables to deter-
mine how velocity vector components and the coartdis of the point C change.
Moreover, it enables to determine how higher déikrea of motion parameters

for the defined path and velocity values of thijnpohange.
In the following example, a trajectory in the foahan ellipse is assumed:

A
=
(9}
I
-+

(27)

o= (52 (52 -1 @

a

for which let f, = 27€% and f,, = 22€2%, and it is assumed tha, = 0,

Vo = 0.22,a = 0.16, b = 0.22. The velocity value was determined as:

— Vcmax _ Vemax
T 1+exp[-c(t-5)]  1+exp[-c(t—25)] (29)

Ve

where: venqr = 0.3 m/s — the maximum motion velocity,
¢ = 3 s — constant responsible for the velocity curve gmaidduring
accelerating and stopping

Having assumed the initial conditions of the trapey asx-(0) = 0.16 m
and y-(0) = 0.22 m, the equation system (27) was solved, consigeitie
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equations (28) and (29). As a result, the kinematation parameters of the
point C, that isx¢, yc, X¢, V¢, X¢, Ve, Xc andy, (Fig. 11a-d) were obtained.
Then, by using the afore-discussed trajectory ggogrwhich uses the kinematic
equations (15)-(18), the IKP solution was obtaiffed. 11f-h).

a) e) A movement direction
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Fig. 11. The IKP solution with the use of a trapggtgenerator: a-d) kinematic motion parameters
of the point C, e) point C path, f-h) the IKP sobuti

The chart in Fig. 11f shows that around 10 s weelsituation when the an-
gles of rotation of the manipulator joints are dgqlihis means that in the case of
the classical approach, kinematic singularities ldb@ccur, whereas due to the
trajectory generator which is free from singulastiarriving at the IKP solution
became possible.

5. Conclusions

In this paper a trajectory generator for robotiapalators is presented. This
generator does not need the inverse of a Jacolaixnso it is singularity robust.
Continuity of trajectory is assured by limiting ciges of generalized coordinates,
velocities, accelerations and accelerations’ tirmgvdtives. The IPK is formu-
lated as an optimization problem because in thisagrh we may use the DKP
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only. By limiting the region in which the optimizan is carried out, the time of
solving the IKP decreases.

The theoretical discussion is confirmed by an eXarpwhich generalized
coordinates, velocities and accelerations of adegrees-of-freedom manipula-
tor are generated correctly even in singularifiesthe authors’ knowledge, it is
the first singularity robust trajectory generatalgorithm that can be applied to
determine generalized coordinates, velocities andlarations of the manipulator
in singularities.

This algorithm may easily be applied to IKP of athenipulators, also re-
dundant manipulators. In such cases the fitnessitmshould be appropriately
defined.
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ODPORNY NA OSOBLIWO SCI GENERATOR TRAJEKTORII
ROBOTA MANIPULACYJNEGO OPIERAJ ACY SIE

NA ALGORYTMIE GENETYCZNYM Z DYNAMICZNYM
KODOWANIEM ROZWI AZAN

Streszczenie

W niniejszym artykule przedstawiono generator k@gi robota manipulacyjnego odporny
na osobliwdci kinematyki. Generator zawiera procegtmzwigzywania zadania odwrotnego kine-
matyki. Problem ten jest zdefiniowany jako probleptymalizacyjny, w ktérym algorytm gene-
tyczny shiy do optymalizacji funkcji dopasowania opieiagj st na btdzie rozwizania zadania.
Aby wyeliminowa& problem osobliwéci, generator wykorzystuje zadanie proste kinematyk
Generator trajektorii unidiwia uzyskanie uogolnionych wspotnych, pedkosci i przyspiesze
manipulatora. Wyniki symulacji wskazyjze opracowana procedura generuje trajektoranipu-
latora nawet w przypadku wysgtienia osobliwéci kinematyki.

Stowa kluczowe:zadanie odwrotne kinematyki, algorytm genetycasgbliwdci, robot manipu-
lacyjny, generator trajektorii
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